

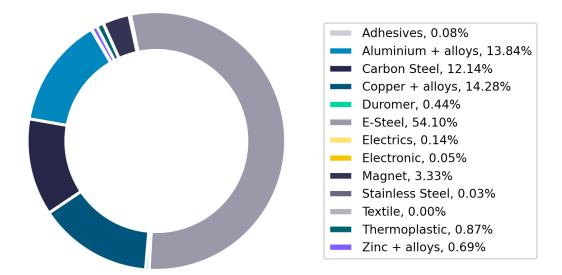
ENVIRONMENTAL PRODUCT DECLARATION

SIMOTICS S 1FK2210-4AC00-000

Type II according to ISO 14021 including life cycle impact assessment (LCIA)

General information

This environmental product declaration (EPD) is based on the international standard ISO 14021 ("Environmental labels and declarations – Self declared environmental claims – Type II"). The data in this EPD has been evaluated on a full-scale life cycle assessment (LCA) study according to ISO 14040/44, taking into account the product category rules (PCR) for electronic and electrotechnical products and systems defined in EN 50693:2019


Siemens is dedicated to an environmentally conscious design of its products in line with IEC 62430 and has implemented an integrated management system according to ISO 9001, ISO 14001 and ISO 45001.

Products	1FK2210-4AC0*-***
Represented by	1FK2210-4AC00-0MB0
Product Description	SIMOTICS S-1FK2 CT servo motor M0=40 Nm; PN = 6.4 kW at nN=2000 rpm (380-480 V); PN = 3.9 kW at nN=1000 rpm (200-240 V); inverter operation at 3AC 400V, unregulated infeed
Functional Unit	Speed and position-controlled motion and torque of a motor over a reference service lifetime (RSL) of 10 years, based on a defined load profile with resulting power losses of 219W on average.

Material composition

The following chart outlines the overall material composition of the calculated reference product. Product weight of 23.99 kg adds up with packaging weight of 2.99 kg to a total weight of 26.99 kg. Packaging consists of Box, Foil Film Wrap Bag Label, Paper.

Product Weight 23.99 kg

Substance assessment

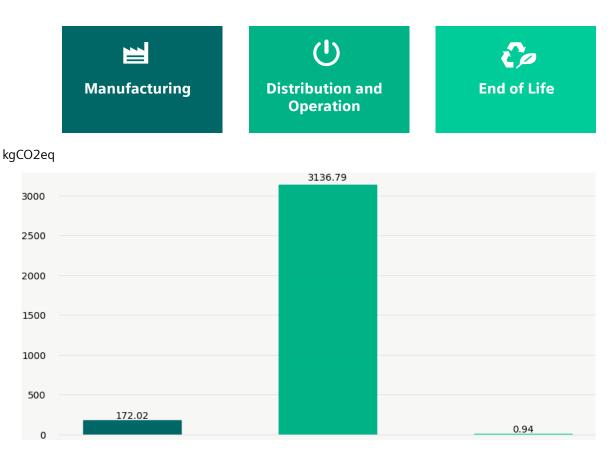
At Siemens, we are committed to the development and production of environmentally sound and sustainably produced equipment. This includes avoiding hazardous substances in our products without compromising their benefits for our customers. Please visit the following website to learn more about how we comply with product-related environmental regulations like RoHS, REACH, WEEE and others: Product Related Environmental Protection

Life cycle stages and reference scenarios

Manufacturing Distance covers the extraction of natural resources, production of raw materials, manufacturing, packaging, and transport distances.	U Distribution and Operation This stage covers the product's distribution, installation, use, and maintenance. Different operating conditions can lead to deviations from the reference scenario.	End-of-Life This stage covers the disassembly, material recycling and thermal treatment of all recyclable materials as well as the disposal of all other materials.						
Scenarios								
Energy model used:	Energy model used:	Energy model used:						
China (standard mix), Europe (standard mix) Transportation model used: Container Ship, Large Ship 200000 DWT 23000 TEU; Truck, 20 - 26t gross weight;Truck, 7.5 t - 12t gross weight	Europe (standard mix) Distribution scenario: Truck, 7.5 t - 12t gross weight 1000km Use scenario: - 16h a day (2-shift operation) - 250 days a year - RSL of 10 years	EMEA End-of-life methodology: Cut-off (plastic waste without energy recovery)						

Key environmental performance indicators

The following impact categories characterize the product's environmental footprint. They have been calculated with LCIA methodology EF3.1; LCA tool: Green Digital Twin (GDT), Database: One Siemens LCA Database (based on MLC CUP 2023.2, formerly GaBi).


To ensure the high quality and completeness of the LCA results, primary data have been used whenever possible. Datasets for resources, such as electrical energy or natural gas, are chosen from the region where the device is produced and assembled. If primary data are not available, secondary data reflecting state-of-the-art manufacturing technology are considered.

Impact Category	Unit	Total	Manufacturing	Distribution	Operation	End of Life
Acidification	Mole of H+ eq	7.80E+00	1.00E+00	1.15E-02	6.79E+00	9.44E-04
Climate change – total	kg CO2 eq	3.31E+03	1.72E+02	7.98E+00	3.13E+03	9.43E-01
Climate change – fossil	kg CO2 eq	3.28E+03	1.72E+02	7.87E+00	3.10E+03	9.44E-01
Climate change – biogenic	kg CO2 eq	2.83E+01	2.62E-01	5.85E-02	2.80E+01	-2.13E-03
Ecotoxicity, freshwater – total	CTUe	2.03E+03	1.96E+03	6.74E+01	0.00E+00	1.15E+00
Eutrophication, freshwater	kg P eq	9.36E-03	2.08E-04	6.20E-05	9.09E-03	1.55E-06
Eutrophication, marine	kg N eq	1.68E+00	1.49E-01	4.30E-03	1.53E+00	2.61E-04
Eutrophication, terrestrial	Mole of N eq	1.77E+01	1.65E+00	4.72E-02	1.60E+01	2.99E-03
Human toxicity, cancer – total	CTUh	8.28E-07	1.20E-07	1.55E-09	7.06E-07	1.26E-10
Human toxicity, non-cancer – total	CTUh	3.01E-05	4.08E-06	8.37E-08	2.59E-05	1.24E-08
lonising radiation, human health	kBq U235 eq	1.52E+03	5.64E+00	1.11E-01	1.51E+03	7.80E-03
Land Use	dimensionless (pt)	2.19E+04	1.42E+03	1.17E+02	2.03E+04	3.05E-01
Ozone depletion	kg CFC-11 eq	4.62E-08	7.46E-10	2.58E-11	4.55E-08	3.80E-13
Particulate matter	Disease incidences	7.01E-05	1.37E-05	1.25E-07	5.63E-05	8.81E-09
Photochemical ozone formation, human health	kg NMVOC eq	4.60E+00	4.65E-01	1.14E-02	4.12E+00	7.85E-04
Resource use, fossils	MJ	5.81E+04	1.90E+03	1.08E+02	5.61E+04	3.58E+00
Resource use, mineral and metals	kg Sb eq	1.29E-02	1.21E-02	1.19E-06	8.48E-04	1.83E-08
Water use	m³ water eq deprived water	9.36E+02	2.39E+02	3.14E-01	6.97E+02	5.80E-02

Climate Change

This chart shows the overall impact of the product on climate change – total. The operations phase is the lifecycle phase with the biggest overall impact. The energy consumption was calculated based on a standardised reference cycle of a feed axis in a machine tool. Deviations from this reference cycle lead to deviation of the results. The scaling of this reference cycle is based on the performance of the motor (speed/torque) and therefore does not reflect the requirements of a specific application. The energy consumption shown is therefore not suitable for selecting motors for a specific application or comparing them with each other.

electricity grid mix EU (Standard) = 0,3122 kg CO2 eq. / kWh

Further information in regards to the calculation of energy consumption in the utilisation phase can be found here.

End-of-Life results

The end-of-life stage considers the recyclability rates of metal, plastics contents and minimum disposal rates according to the guidelines IEC TR 62635:2012 for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment.

It leads to:

- an overall product recyclability of up to 80% mainly due to high metal content
- an energy recoverability of up to 1% from plastic materials
- a minimum disposal rate of 19%

Note: The device should not be disposed of as unsorted municipal waste. Special treatment for specific components may be mandated by law or recommended for environmental reasons. Observe all local and applicable laws.

Legal Disclaimer

This Environmental Product Declaration (EPD) is for information purposes only. It is based upon the standards mentioned above.

This EPD does not warrant or guarantee the composition of a product or that the product will retain a particular composition for a particular period. Therefore, all warranties, representations, conditions, and all other terms of any kind whatsoever implied by statute or common law are – to the fullest extent permitted by applicable law – excluded.

Siemens therefore does not assume any liability for any error or for any consequence which may arise from the use of this information to the maximum extent under the law.

Please be aware that the data of this EPD cannot be compared with data calculated based upon product category rules (PCRs) other than the standards mentioned above. The values given are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Published by Siemens AG

Siemens AG, Digital Industries

Motion Control

Industriestraße 1 97616 Bad Neustadt a.d. Saale

Subject to changes and errors.

The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

All product designations may be trademarks or product names of Siemens AG or other companies whose use by third parties for their own purposes could violate the rights of the owners.

© 2024 by Siemens AG, Berlin and Munich