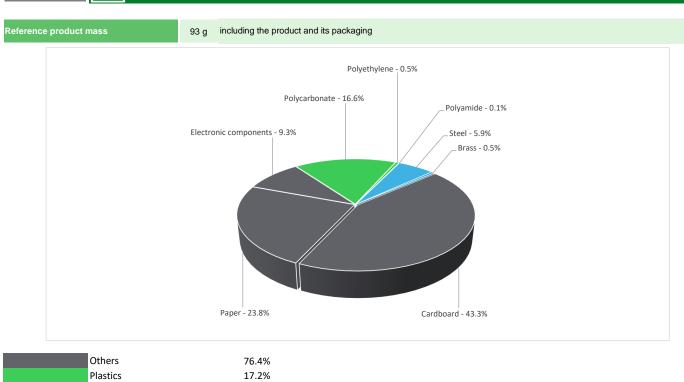
Product Environmental Profile

KNX MINI PRESENCE DETECTOR



General information

Reference product	KNX Mini Presence Detector - MTN6303-0019
Description of the product	The presence detector detects the presence of humans in a specific area, even when they are stationary, by identifying subtle indicators like body heat or micro-movements.
Description of the range	Single product
Functional unit	This product detects the presence of persons even in the case of small movements and controls the lighting and HVAC as well which is carried out dependent on movement (4 channels) or additionally dependent on brightness (1 channel) via KNX telegrams. If there is sufficient daylight, the lighting is switched off or adapted to a detection brightness (constant light regulation) for the reference life time of 10years.
Specifications are:	Angle of detection: 360° Range: max. 6 x 6 m (tangential) & max. 4 x 4 m (radial) Sensors: 4 x passive infrared Detection brightness: internal light sensor adjustable from approx. 2 to 1000 Lux IP protection rating: IP 20 Dimension: 90 x 75 x 120 mm EC guidelines: Low voltage directive 2006/95/EC and EMC directive 2004/108/EC

Constituent materials

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

Additional environmental information

6.4%

End Of Life

Recyclability potential:

11%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REECCY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Metals

Environmental impacts

Reference service life time	10 years									
Product category	Other equipments - Active product									
Life cycle of the product	The manufacturing, the distribution, the installation	n, the use and the end of life w	ere taken into consideration in th	is study						
Electricity consumption	The electricity consumed during manufacturing pr a negligable consumption	rocesses is considered for each	n part of the product individually,	the final assembly generates						
Installation elements	The product does not require special installation procedure and requires little to no energy to install. The disposal of the packaging materials are accounted during the installation phase (including transport to disposal). The material constituents of the packaging are Cardboard 97% and Paper 3%.									
Use scenario	The product is in active mode 20% of the time with a power use of 0.3W and in stand-by mode 80% of the time with a power use of 0.12W over a period of 10 years.									
Time representativeness	The collected data are representative of the year 2024									
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are similar and representative of the actual type of technologies used to make the product.									
Geographical	Final assembly site	Use	phase	End-of-life						
representativeness	Romania Spain, Italy & Rest of the World Spain, Italy & Rest of the World World									
	[A1 - A3]	[C1 - C4]								
Energy model used	Electricity Mix; Low voltage; 2020; France, FR Electricity Mix; Low voltage; 2020; Europe, EU- 27	Electricity Mix; Low voltage; RER	Electricity Mix; Low voltage; 2020; Spain, ES Electricity Mix; Low voltage; 2020; Italy, IT Electricity Mix; Low voltage; 2020; Global, GLO	Global, European and French datasets are used.						

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators	KNX Mini Presence Detector - MTN6303-0019							
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	7.35E+00	2.08E+00	4.01E-02	7.89E-02	5.08E+00	7.24E-02	-5.28E-02
Contribution to climate change-fossil	kg CO2 eq	7.27E+00	2.16E+00	4.01E-02	1.40E-02	5.00E+00	5.72E-02	-2.13E-02
Contribution to climate change-biogenic	kg CO2 eq	7.47E-02	-8.49E-02	0*	6.49E-02	7.96E-02	1.52E-02	-3.15E-02
Contribution to climate change-land use and land use change	e kg CO2 eq	2.27E-05	2.26E-05	1.44E-07	0*	0*	1.97E-08	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	5.19E-07	4.99E-07	1.01E-09	5.12E-10	1.75E-08	1.06E-09	-3.31E-09
Contribution to acidification	mol H+ eq	2.77E-02	5.28E-03	8.52E-05	8.20E-05	2.21E-02	1.54E-04	-1.91E-04
Contribution to eutrophication, freshwater	kg P eq	2.49E-05	1.61E-05	1.66E-07	1.86E-08	8.32E-06	2.75E-07	-3.24E-08
Contribution to eutrophication marine	kg N eq	3.57E-03	7.38E-04	1.38E-05	1.97E-05	2.76E-03	3.38E-05	-1.29E-05
Contribution to eutrophication, terrestrial	mol N eq	4.87E-02	7.79E-03	1.51E-04	2.63E-04	4.01E-02	4.17E-04	-1.51E-04
Contribution to photochemical ozone formation - human health	kg COVNM eq	1.14E-02	2.28E-03	4.98E-05	5.55E-05	8.89E-03	9.63E-05	-5.61E-05
Contribution to resource use, minerals and metals	kg Sb eq	1.09E-03	1.09E-03	0*	0*	1.71E-06	0*	-7.28E-06
Contribution to resource use, fossils	MJ	1.40E+02	3.09E+01	8.45E-01	2.63E-01	1.08E+02	5.65E-01	-4.98E-01
Contribution to water use	m3 eq	2.30E+00	1.91E+00	2.75E-03	8.30E-04	3.82E-01	2.92E-03	-1.23E-02

Inventory flows Indicators		к	NX MINI PRESE	NCE DETECTOR	- MTN6303-0019			
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	2.95E+01	2.36E+00	5.31E-03	2.25E-02	2.71E+01	2.99E-02	-5.62E-03
Contribution to use of renewable primary energy resources used as raw material	MJ	8.57E-01	8.57E-01	0	0	0	0	0.00E+00
Contribution to total use of renewable primary energy resources	MJ	3.04E+01	3.21E+00	5.31E-03	2.25E-02	2.71E+01	2.99E-02	-5.62E-03
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	1.40E+02	3.03E+01	8.45E-01	2.63E-01	1.08E+02	5.65E-01	-4.98E-01
Contribution to use of non renewable primary energy resources used as raw material	MJ	6.31E-01	6.31E-01	0	0	0	0	0.00E+00
Contribution to total use of non-renewable primary energy resources	MJ	1.40E+02	3.09E+01	8.45E-01	2.63E-01	1.08E+02	5.65E-01	-4.98E-01
Contribution to use of secondary material	kg	2.26E-02	2.26E-02	0	0	0	0	2.00E-02
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0	0	0	0	0	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0	0	0	0	0	0.00E+00
Contribution to net use of freshwater	m³	5.32E-02	4.41E-02	6.41E-05	1.90E-05	8.92E-03	7.71E-05	-2.85E-04
Contribution to hazardous waste disposed	kg	2.07E+01	2.05E+01	0*	1.53E-02	1.05E-01	2.30E-02	-5.74E-01
Contribution to non hazardous waste disposed	kg	1.33E+00	5.84E-01	8.80E-03	1.89E-03	7.27E-01	9.96E-03	-1.71E-02
Contribution to radioactive waste disposed	kg	5.66E-04	3.47E-04	6.96E-06	8.03E-07	2.09E-04	1.90E-06	-7.73E-06
Contribution to components for reuse	kg	0.00E+00	0	0	0	0	0	0.00E+00
Contribution to materials for recycling	kg	1.35E-02	7.65E-03	0	0	0	5.82E-03	0.00E+00
Contribution to materials for energy recovery	kg	0.00E+00	0	0	0	0	0	0.00E+00
Contribution to exported energy	MJ	0.00E+00	0	0	0	0	0	0.00E+00

 $^{^{\}star}$ represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product \$\$kg\$ of C\$\$7.94E-03\$\$ Contribution to biogenic carbon content of the associated packaging \$\$kg\$ of C\$\$1.17E-02\$\$

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators			KNX MI	INI PRESE	NCE DET	ECTOR -	MTN6303-0019		
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	5.08E+00	0	0	0	0	0	5.08E+00	0
Contribution to climate change-fossil	kg CO2 eq	5.00E+00	0	0	0	0	0	5.00E+00	0
Contribution to climate change-biogenic	kg CO2 eq	7.96E-02	0	0	0	0	0	7.96E-02	0
Contribution to climate change-land use and land use change	ge kg CO2 eq	0*	0	0	0	0	0	0*	0
Contribution to ozone depletion	kg CFC-11 eq	1.75E-08	0	0	0	0	0	1.75E-08	0
Contribution to acidification	mol H+ eq	2.21E-02	0	0	0	0	0	2.21E-02	0
Contribution to eutrophication, freshwater	kg P eq	8.32E-06	0	0	0	0	0	8.32E-06	0
Contribution to eutrophication marine	kg N eq	2.76E-03	0	0	0	0	0	2.76E-03	0
Contribution to eutrophication, terrestrial	mol N eq	4.01E-02	0	0	0	0	0	4.01E-02	0
Contribution to photochemical ozone formation - human health	kg COVNM eq	8.89E-03	0	0	0	0	0	8.89E-03	0
Contribution to resource use, minerals and metals	kg Sb eq	1.71E-06	0	0	0	0	0	1.71E-06	0
Contribution to resource use, fossils	MJ	1.08E+02	0	0	0	0	0	1.08E+02	0
Contribution to water use	m3 eq	3.82E-01	0	0	0	0	0	3.82E-01	0

Inventory flows Indicators				KNX MI	NI PRESE	NCE DET	ECTOR -	MTN6303-0019		
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]	
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	2.71E+01	0	0	0	0	0	2.71E+01	0	
Contribution to use of renewable primary energy resources used as raw material	MJ	0	0	0	0	0	0	0	0	
Contribution to total use of renewable primary energy resources	MJ	2.71E+01	0	0	0	0	0	2.71E+01	0	
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	1.08E+02	0	0	0	0	0	1.08E+02	0	
Contribution to use of non renewable primary energy resources used as raw material	MJ	0	0	0	0	0	0	0	0	
Contribution to total use of non-renewable primary energy resources	MJ	1.08E+02	0	0	0	0	0	1.08E+02	0	
Contribution to use of secondary material	kg	0	0	0	0	0	0	0	0	
Contribution to use of renewable secondary fuels	MJ	0	0	0	0	0	0	0	0	
Contribution to use of non renewable secondary fuels	MJ	0	0	0	0	0	0	0	0	
Contribution to net use of freshwater	m³	8.92E-03	0	0	0	0	0	8.92E-03	0	
Contribution to hazardous waste disposed	kg	1.05E-01	0	0	0	0	0	1.05E-01	0	
Contribution to non hazardous waste disposed	kg	7.27E-01	0	0	0	0	0	7.27E-01	0	
Contribution to radioactive waste disposed	kg	2.09E-04	0	0	0	0	0	2.09E-04	0	
Contribution to components for reuse	kg	0	0	0	0	0	0	0	0	
Contribution to materials for recycling	kg	0	0	0	0	0	0	0	0	
Contribution to materials for energy recovery	kg	0	0	0	0	0	0	0	0	
Contribution to exported energy	MJ	0	0	0	0	0	0	0	0	

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.5-6, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	SCHN-02171-V01.01-EN	Drafting rules	PEP-PCR-ed4-2021 09 06				
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08				
Verifier accreditation N°	VH42	Information and reference documents	www.pep-ecopassport.org				
Date of issue	11-2025	Validity period	5 years				
Independent verification of the declaration and data, in compliance with ISO 14025: 2006							

Internal External X

The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)

PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022

The components of the present PEP may not be compared with components from any other program.

Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations"

Schneider Electric Industries SAS
Country Customer Care Center
http://www.se.com/contact
Head Office
35, rue Joseph Monier
CS 30323
F- 92500 Rueil Malmaison Cedex
RCS Nanterre 954 503 439

Capital social 928 298 512 €

SCHN-02171-V01.01-EN

www.se.com

Published by Schneider Electric
©2024 - Schneider Electric – All rights reserved

11-2025