Product Environmental Profile

Harmony XB5 USB 3.0 Interface Jack Type A

ENVPEP2510035_V1 10-2025

General information

Reference product	Harmony XB5 USB 3.0 Interface Jack Type A - XB5PUSB3SP2							
Description of the product	Primary function of this product is to enable quick and secure connections which is designed to provide convenient access USB Type-A interface directly on industrial control panels without opening the panel enclosure							
Description of the range	ingle product							
Functional unit	Harmony XB5 panel-mounted USB port enables easy connection of USB devices to your machine. It provides a simple and secure way to access your equipment through standardized connectors without the need to open the control cabinet door. Designed for convenience, this USB port can be quickly installed into standard 22 mm diameter cut-outs.							
Specifications are:	Integrated connection type: USB 3.0 type A IP degree of protection: IP20 front: conforming to IEC 60529 IP20 back: conforming to IEC 60529 Product certifications: CSA, UL listed							

Constituent materials

Reference product mass 31.67 g including the product, its packaging, additional elements and accessories PUR Polyurethane - 4% Stainless steel - 9% Aluminium - 6.5% Brass - 1.8% Bronze - 1.6% Cardboard - 15.1% PBT Polybutylene Terephtalate - 53.9% Various - 4.6% Paper - 0.3%_ Electronic components - 3.2% Plastics 57.9% Others 23.2% Metals 18.9%

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

ENVPEP2510035_V1 10-2025

(1) Additional environmental information

End Of Life

Recyclability potential:

86%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

T Environmental impacts

Reference service life time	20 years								
Product category	Other equipments - Passive product - non-continuous operation								
Life cycle of the product	The manufacturing, the distribution, the installation	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study							
Electricity consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligible consumption								
Installation elements	The product does not require any installation ope	rations							
Use scenario	Does not consume any electrical power on its own.								
Time representativeness	The collected data are representative of the year 2025								
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are similar and representative of the actual type of technologies used to make the product.								
Geographical representativeness	Final assembly site Use phase End-of-life								
representativeness	China Global Global								
	[A1 - A3] [A5] [B6] [C1 - C4]								
Energy model used	Electricity Mix; High voltage; 2020; China, CN No energy used Electricity Mix; Low voltage; 2020; Global, GLO French datasets are used.								

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators	Harmony XB5 USB 3.0 Interface Jack Type A - XB5PUSB3SP2								
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads	
Contribution to climate change	kg CO2 eq	2.67E-01	2.14E-01	2.71E-02	1.80E-04	0*	2.62E-02	-1.09E-01	
Contribution to climate change-fossil	kg CO2 eq	2.67E-01	2.14E-01	2.71E-02	1.80E-04	0*	2.60E-02	-1.08E-01	
Contribution to climate change-biogenic	kg CO2 eq	4.36E-04	2.85E-04	0*	0*	0*	1.51E-04	-9.40E-04	
Contribution to climate change-land use and land use change	kg CO2 eq	3.74E-09	5.94E-10	0*	0*	0*	3.15E-09	0.00E+00	
Contribution to ozone depletion	kg CFC-11 eq	6.59E-08	4.15E-08	2.40E-08	7.34E-12	0*	3.38E-10	-8.16E-09	
Contribution to acidification	mol H+ eq	1.82E-03	1.60E-03	1.19E-04	2.48E-06	0*	9.99E-05	-7.05E-04	
Contribution to eutrophication, freshwater	kg P eq	7.89E-07	6.80E-07	3.18E-09	9.14E-10	0*	1.05E-07	-1.52E-07	
Contribution to eutrophication, marine	kg N eq	2.81E-04	1.99E-04	5.49E-05	1.17E-06	0*	2.60E-05	-7.26E-05	
Contribution to eutrophication, terrestrial	mol N eq	3.08E-03	2.18E-03	5.95E-04	1.20E-05	0*	2.98E-04	-7.97E-04	
Contribution to photochemical ozone formation - human health	kg COVNM eq	1.29E-03	1.02E-03	1.94E-04	2.87E-06	0*	7.36E-05	-3.95E-04	
Contribution to resource use, minerals and metals	kg Sb eq	4.63E-06	4.63E-06	0*	0*	0*	0*	-2.73E-06	
Contribution to resource use, fossils	MJ	5.04E+00	4.38E+00	3.38E-01	2.11E-03	0*	3.16E-01	-2.16E+00	
Contribution to water use	m3 eq	2.15E-01	2.09E-01	1.38E-03	4.37E-04	0*	3.31E-03	-1.68E-01	

10-2025 ENVPEP2510035_V1

Inventory flows Indicators	Harmony XB5 USB 3.0 Interface Jack Type A - XB5PUSB3SP2								
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and Ioads	
Contribution to renewable primary energy used as energy	MJ	1.40E-01	1.00E-01	0*	0*	0*	3.91E-02	-2.85E-02	
Contribution to renewable primary energy used as raw material	MJ	9.68E-02	9.68E-02	0*	0*	0*	0*	0.00E+00	
Contribution to total renewable primary energy	MJ	2.36E-01	1.97E-01	0*	0*	0*	3.91E-02	-2.85E-02	
Contribution to non renewable primary energy used as energy	, MJ	4.47E+00	3.81E+00	3.38E-01	2.11E-03	0*	3.16E-01	-1.42E+00	
Contribution to non renewable primary energy used as raw material	MJ	5.73E-01	5.73E-01	0*	0*	0*	0*	-7.48E-01	
Contribution to total non renewable primary energy	MJ	5.04E+00	4.38E+00	3.38E-01	2.11E-03	0*	3.16E-01	-2.16E+00	
Contribution to use of secondary material	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to net use of fresh water	m³	5.00E-03	4.88E-03	3.21E-05	1.02E-05	0*	8.35E-05	-3.91E-03	
Contribution to hazardous waste disposed	kg	2.59E-01	2.58E-01	0*	0*	0*	1.22E-03	-1.91E-01	
Contribution to non hazardous waste disposed	kg	2.35E-01	2.22E-01	2.76E-05	4.78E-03	0*	8.62E-03	-5.42E-02	
Contribution to radioactive waste disposed	kg	7.06E-05	6.45E-05	5.40E-06	0*	0*	7.29E-07	-3.99E-05	
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to materials for recycling	kg	2.30E-02	5.16E-04	0*	0*	0*	2.24E-02	0.00E+00	
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to exported energy	MJ	5.64E-06	5.64E-06	0*	0*	0*	0*	0.00E+00	
* represents less than 0.01% of the total life cycle of the refer	ence flow								
Contribution to biogenic carbon content of the product	kg of C	0.00E+00							
Contribution to biogenic carbon content of the associated packaging	kg of C	1.35E-03							

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

ENVPEP2510035_V1 10-2025

Inventory flows Indicators				Harmony XB5	USB 3.0 I	nterface	Jack Typ	e A - XB5PUSI	33SP2
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding enewable primary energy used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable primary energy resources sed as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy esources	MJ	0*	0*	0*	0*	0*	0*	0*	0*
ontribution to use of non renewable primary energy excluding on renewable primary energy used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
ontribution to use of non renewable primary energy sources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
ontribution to total use of non-renewable primary energy sources	MJ	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
tribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
stribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to net use of freshwater	m³	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to hazardous waste disposed	kg	0*	0*	0*	0*	0*	0*	0*	0*
stribution to non hazardous waste disposed	kg	0*	0*	0*	0*	0*	0*	0*	0*
tribution to radioactive waste disposed	kg	0*	0*	0*	0*	0*	0*	0*	0*
ribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
ribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
tribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
ontribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.5-6, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2510035_V1	Drafting rules	PEP-PCR-ed4-2021 09 06						
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08						
Date of issue	10-2025	Information and reference documents	www.pep-ecopassport.org						
		Validity period	5 years						
Independent verification of the declaration and data, in compliance with ISO 14021 : 2016									
Internal X	External								
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022									
The components of the present PEP may not be compared with components from any other program.									
Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"									

Country Customer Care Center http://www.se.com/contact
Head Office
35, rue Joseph Monier
CS 30323
F- 92500 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 928 298 512 €

Schneider Electric Industries SAS

www.se.com

Published by Schneider Electric

ENVPEP2510035_V1 ©2024 - Schneider Electric – All rights reserved

10-2025

ENVPEP2510035_V1 10-2025