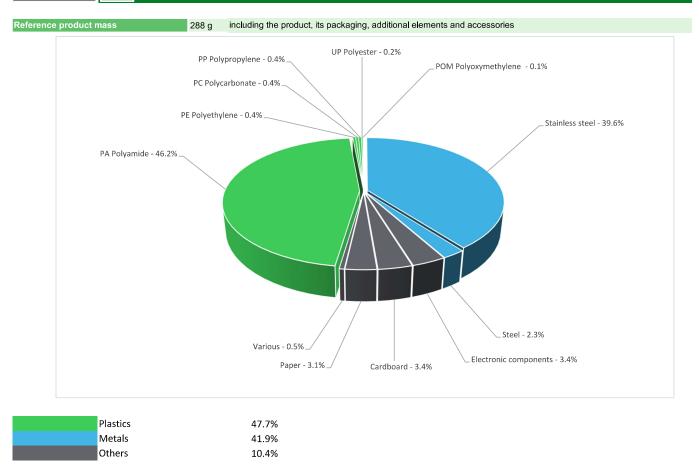
Product Environmental Profile

Rope Pull Switch With Universal Support



ENVPEP2506037_V1 06-2025

General information

Reference product	Rope Pull Switch With Universal Support - XB5RP1US2								
Description of the product	The rope pull switch is commonly used as a safety or control device in industries or commercial to command the opening of a door. This product consists of a radio transmitter package and doesn't need wire or an external power supply. It is designed with universal mounting support for flexible installation.								
Description of the range	ngle product								
Functional unit	This rope pull switch is part of the Harmony XB5R (plastic) and XB4R (metal) ranges of wireless and batteryless pushbuttons. It features rope pull mechanism integrated with a wireless, battery-free transmitter. Designed for use with automatic doors and it operates with a pulling force ranging from 45 N to 1000 N. When activated, the switch sends a radio signal to the receiver in control panel to open or close the door. It uses the Zigbee Green Power protocol at 2.4 GHz, compliance with IEEE 802.15.4 standards. The product comes with universal support and offers a service life of up to 10 years.								
Specifications are:	IP degree of protection: IP65 conforming to IEC 62262 IK degree of protection: IK05 conforming to IEC 62262 NEMA degree of protection: NEMA 4 Mechanical durability: 1000000 cycles Product certifications: UL, GOST, CE, RCM, ANATEL, FCC, UKCA								

Constituent materials

ENVPEP2506037_V1 06-2025

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

(1) Additional environmental information

End Of Life

Recyclability potential:

44%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Environmental impacts

Reference service life time	10 years									
Product category	Other equipments - Active product									
Life cycle of the product	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study									
Electricity consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligible consumption									
Installation elements	The product does not require any installation ope	erations								
Use scenario	This is green power product means the energy is produced when the user pushes the pushbutton.									
Time representativeness	The collected data are representative of the year 2025									
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are similar and representative of the actual type of technologies used to make the product.									
Geographical	Final assembly site Use phase End-of-life									
representativeness	France, Europe Global Global									
Energy model used	[A1 - A3] Electricity Mix; High voltage; 2020; France, FR	[A5] No energy used	[B6] Electricity Mix; Low voltage; 2020; Global, GLO	[C1 - C4] Global, European and French datasets are used.						

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators			Rope	Pull Switch Wi	th Universal Sup	port - XB5RP1U	S2	
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and Ioads
Contribution to climate change	kg CO2 eq	2.80E+00	2.05E+00	2.03E-01	4.34E-03	0*	5.43E-01	-4.06E-01
Contribution to climate change-fossil	kg CO2 eq	2.83E+00	2.08E+00	2.03E-01	4.34E-03	0*	5.42E-01	-4.05E-01
Contribution to climate change-biogenic	kg CO2 eq	-2.72E-02	-2.81E-02	0*	0*	0*	0*	-9.58E-04
Contribution to climate change-land use and land use char	ige kg CO2 eq	1.62E-06	1.56E-06	0*	0*	0*	5.72E-08	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	5.22E-07	3.36E-07	1.79E-07	0*	0*	6.44E-09	-6.00E-08
Contribution to acidification	mol H+ eq	1.09E-02	8.85E-03	8.70E-04	9.55E - 06	0*	1.18E-03	-2.40E-03
Contribution to eutrophication, freshwater	kg P eq	4.20E-05	4.12E-05	2.38E-08	0*	0*	7.19E - 07	-6.56E-07
Contribution to eutrophication, marine	kg N eq	2.35E-03	1.68E-03	3.98E-04	4.37E-06	0*	2.68E-04	-2.35E-04
Contribution to eutrophication, terrestrial	mol N eq	2.43E-02	1.69E-02	4.32E-03	4.56E-05	0*	3.06E-03	-2.74E-03
Contribution to photochemical ozone formation - human health	kg COVNM eq	7.79E-03	5.55E-03	1.42E-03	1.07E-05	0*	8.06E-04	-9.58E-04
Contribution to resource use, minerals and metals	kg Sb eq	2.09E-04	2.09E-04	0*	0*	0*	2.22E-08	-1.30E-04
Contribution to resource use, fossils	MJ	4.03E+01	3.48E+01	2.53E+00	8.56E-03	0*	2.99E+00	-9.57E+00
Contribution to water use	m3 eq	9.44E-01	8.77E-01	1.03E-02	1.90E-03	0*	5.41E-02	-1.76E-01

06-2025 ENVPEP2506037_V1

Inventory flows Indicators	Rope Pull Switch With Universal Support - XB5RP1US2								
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads	
Contribution to renewable primary energy used as energy	MJ	9.54E-01	8.24E-01	0*	0*	0*	1.31E-01	-7.58E-02	
Contribution to renewable primary energy used as raw material	MJ	1.82E-01	1.82E-01	0*	0*	0*	0*	0.00E+00	
Contribution to total renewable primary energy	MJ	1.14E+00	1.01E+00	0*	0*	0*	1.31E-01	-7.58E-02	
Contribution to non renewable primary energy used as energy	MJ	3.56E+01	3.01E+01	2.53E+00	8.56E-03	0*	2.99E+00	-9.54E+00	
Contribution to non renewable primary energy used as raw material	MJ	4.72E+00	4.72E+00	0*	0*	0*	0*	-2.89E-02	
Contribution to total non renewable primary energy	MJ	4.03E+01	3.48E+01	2.53E+00	8.56E-03	0*	2.99E+00	-9.57E+00	
Contribution to use of secondary material	kg	8.84E-03	8.84E-03	0*	0*	0*	0*	0.00E+00	
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to net use of fresh water	m³	2.22E-02	2.04E-02	2.40E-04	4.42E-05	0*	1.44E-03	-4.10E-03	
Contribution to hazardous waste disposed	kg	7.84E+00	7.83E+00	0*	0*	0*	1.10E-02	-1.03E+01	
Contribution to non hazardous waste disposed	kg	1.21E+00	9.14E-01	2.07E-04	1.85E-02	0*	2.81E-01	-3.36E-01	
Contribution to radioactive waste disposed	kg	5.41E-04	4.89E-04	4.04E-05	0*	0*	1.19E-05	-1.51E-04	
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to materials for recycling	kg	1.30E-01	1.66E-02	0*	0*	0*	1.13E-01	0.00E+00	
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to exported energy	MJ	1.28E-03	1.69E-04	0*	0*	0*	1.11E-03	0.00E+00	
* represents less than 0.01% of the total life cycle of the refer	ence flow								
Contribution to biogenic carbon content of the product	ka of C	0.00E+00							

Contribution to biogenic carbon content of the product kg of C 0.00E+00 Contribution to biogenic carbon content of the associated 5.60E-03 kg of C

packaging

* The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators			Rope Pull S	Switch Wi	th Unive	rsal Sup _l	oort - XB5RP1L	JS2	
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to climate change-fossil	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to climate change-biogenic	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to climate change-land use and land use chang	je kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to acidification	mol H+ eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to eutrophication, freshwater	kg P eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to eutrophication marine	kg N eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to eutrophication, terrestrial	mol N eq	0*	0*	0*	0*	0*	0*	0*	0*
contribution to photochemical ozone formation - human ealth	kg COVNM eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to resource use, minerals and metals	kg Sb eq	0*	0*	0*	0*	0*	0*	0*	0*
ontribution to resource use, fossils	MJ	0*	0*	0*	0*	0*	0*	0*	0*
ontribution to water use	m3 eq	0*	0*	0*	0*	0*	0*	0*	0*

ENVPEP2506037_V1 06-2025

Inventory flows Indicators				Rope Pull	Switch Wi	th Unive	rsal Supp	ort - XB5RP1	US2	
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]	
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to total use of renewable primary energy esources	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to use of non renewable primary energy esources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to total use of non-renewable primary energy esources	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to net use of freshwater	m³	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to hazardous waste disposed	kg	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to non hazardous waste disposed	kg	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to radioactive waste disposed	kg	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*	

 $[\]ensuremath{^*}$ represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.3.0.1-17, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2506037_V1	Drafting rules	PEP-PCR-ed4-2021 09 06							
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08							
Date of issue	06-2025	Information and reference documents	www.pep-ecopassport.org							
		Validity period	5 years							
Independent verification of the de	Independent verification of the declaration and data, in compliance with ISO 14021 : 2016									
Internal X	Internal X External									
The PCR review was conducted	The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022										
The components of the present PEP may not be compared with components from any other program.										
Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"										

Schneider Electric Industries SAS
Country Customer Care Center
http://www.se.com/contact
Head Office
35, rue Joseph Monier
CS 30323
F- 92500 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 928 298 512 €

www.se.com

Published by Schneider Electric

ENVPEP2506037_V1 ©2024 - Schneider Electric – All rights reserved 06-2025

ENVPEP2506037_V1 06-2025