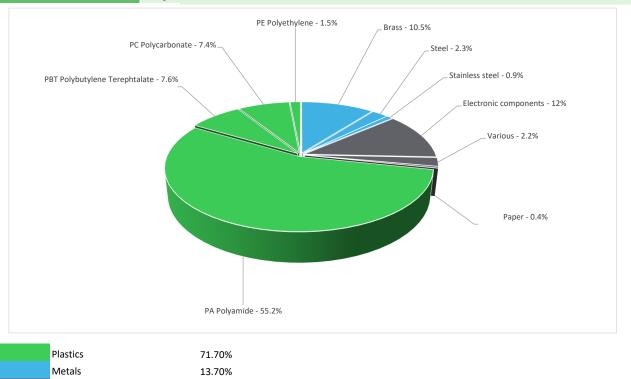
Product Environmental Profile

XB7 Monolithic Illuminated Push Button

Harmony XB7 Range



General information

Reference product	XB7 Monolithic Illuminated Push Button - XB7NW33M1
Description of the product	Illuminated push buttons provide a much higher level of visibility for the switch location or as an indication of its current status. It combines simplicity of installation, flexibility, and robustness. It meets the requirements of the majority of industrial applications.
Description of the range	The products of the range are: Harmony XB7 range of plastic control and signaling units is a monolithic range designed for use in the industrial, tertiary and building sectors with supply voltage 12V to 240V and rated current 0.1 A to 0.6A. It is simple to use and quick to install The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology.
Functional unit	Switch ON/OFF electical contact and/or provide visual signaling for 10 years at a 71% use rate. It has an integral LED and screw clamp terminals and easily installed into standard 22mm diameter cut-outs and connected with simple screw-clamp connections. It is clearly distinguishable visually at a distance due to clear colors and illumination via integral LED, minimizing errors in machine control and enabling complex machine statuses to be read at a glance in industrial applications. It has a double insulated plastic bezel and product is adhering to standards JIS C8201-5-1, IEC 60947-1, UL-508 etc
Specifications are:	IP degree of protection: IP20 (rear face) conforming to IEC 60529 IP65 (front face) conforming to IEC 60529 Electrical shock protection class: Class II conforming to IEC 61140 NEMA degree of protection: NEMA 12 conforming to UL 50 E Shock resistance: 50 gn (duration = 11 ms) for half sine wave acceleration conforming to IEC 60068-2-27 30 gn (duration = 18 ms) for half sine wave acceleration

Constituent materials

Reference product mass 23.5 g including the product, its packaging, additional elements and accessories

Others 14.60%

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website: https://www.se.com

Additional environmental information

End Of Life

Recyclability potential:

14%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECYLAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

T Environmental impacts

Reference service life time	10 years									
Product category	Other equipments - Active product									
Life cycle of the product	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study									
Electricity consumtion	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption									
Installation elements	The product does not require any installation op	erations								
Use scenario	The product is in active mode 71% of the time with a power use of 6.21135 W and 29% of the time with off mode with power use of 0W for 10 years									
Time representativeness	The collected data are representative of the year 2024									
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and Representative of the actual type of technologies used to make the product.									
Geographical representativeness	Rest of the World									
	[A1 - A3] [A5] [B6] [C1 - C4]									
		Electricity Mix; Low voltage; 2020; Europe, EU-27	Electricity Mix; Low voltage; 2020; Europe, EU-27	Electricity Mix; Low voltage; 2020; Europe, EU-27						
Energy model used	Electricity Mix; High voltage; 2020; Indonesia,	Electricity Mix; Low voltage; 2020; Asia Pacific, APAC	Electricity Mix; Low voltage; 2020; Asia Pacific, APAC	Electricity Mix; Low voltage; 2020; Asia Pacific, APAC						
	ID	Electricity Mix; Low voltage; 2020; United States, US	Electricity Mix; Low voltage; 2020; United States, US	Electricity Mix; Low voltage; 2020; United States, US						
		Electricity Mix; Low voltage; 2020; Brazil, BR	Electricity Mix; Low voltage; 2020; Brazil, BR	Electricity Mix; Low voltage; 2020; Brazil, BR						

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators	XB7 Monolithic Illuminated Push Button - XB7NW33M1									
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads		
Contribution to climate change	kg CO2 eq	1.78E+02	2.63E-01	2.89E-02	0*	1.78E+02	6.15E-02	-1.41E-02		
Contribution to climate change-fossil	kg CO2 eq	1.78E+02	2.62E-01	2.89E-02	0*	1.78E+02	6.13E-02	-1.42E-02		
Contribution to climate change-biogenic	kg CO2 eq	2.29E-01	8.86E-04	0*	0*	2.28E-01	1.58E-04	6.94E-05		
Contribution to climate change-land use and land use change	kg CO2 eq	2.57E-06	2.57E-06	0*	0*	0*	0*	0.00E+00		
Contribution to ozone depletion	kg CFC-11 eq	8.96E-07	5.01E-08	2.54E-08	0*	8.20E-07	0*	-3.85E-09		
Contribution to acidification	mol H+ eq	9.88E-01	2.05E-03	1.19E-04	0*	9.85E-01	0*	-7.74E-05		
Contribution to eutrophication, freshwater	kg (PO4)³¯ eq	2.81E-04	5.88E-06	0*	0*	2.75E-04	7.47E-08	-4.91E-08		
Contribution to eutrophication, marine	kg N eq	1.16E-01	2.81E-04	5.42E-05	0*	1.16E-01	2.28E-05	-7.98E-06		
Contribution to eutrophication, terrestrial	mol N eq	1.56E+00	2.98E-03	5.87E-04	0*	1.56E+00	2.55E-04	-8.95E-05		
Contribution to photochemical ozone formation - human health	kg COVNM eq	3.78E-01	1.05E-03	1.96E-04	0*	3.77E-01	6.81E-05	-3.40E-05		
Contribution to resource use, minerals and metals	kg Sb eq	5.27E-05	1.40E-05	0*	0*	3.87E-05	0*	-2.49E-06		
Contribution to resource use, fossils	MJ	3.79E+03	4.70E+00	0*	0*	3.78E+03	7.24E-01	-2.30E-01		
Contribution to water use	m3 eq	1.11E+01	1.20E-01	1.46E-03	0*	1.10E+01	7.29E-03	-6.52E-03		

Inventory flows Indicators	XB7 Monolithic Illuminated Push Button - XB7NW33M1									
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads		
Contribution to renewable primary energy used as energy	MJ	7.12E+02	1.11E-01	0*	0*	7.12E+02	0*	-1.32E-03		
Contribution to renewable primary energy used as raw material	MJ	1.81E-03	1.81E-03	0*	0*	0*	0*	-1.48E-03		
Contribution to total renewable primary energy	MJ	7.12E+02	1.13E-01	0*	0*	7.12E+02	0*	-2.80E-03		
Contribution to non renewable primary energy used as energy	MJ	3.79E+03	4.24E+00	0*	0*	3.78E+03	7.24E-01	-2.24E-01		
Contribution to non renewable primary energy used as raw material	MJ	4.58E-01	4.58E-01	0*	0*	0*	0*	-6.74E-03		
Contribution to total non renewable primary energy	MJ	3.79E+03	4.70E+00	0*	0*	3.78E+03	7.24E-01	-2.30E-01		
Contribution to use of secondary material	kg	1.30E-05	1.30E-05	0*	0*	0*	0*	0.00E+00		
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to net use of fresh water	m³	2.59E-01	2.79E-03	3.41E-05	0*	2.56E-01	1.70E-04	-1.52E-04		
Contribution to hazardous waste disposed	kg	5.71E+00	3.38E-01	0*	0*	5.37E+00	2.72E-03	-1.86E-01		
Contribution to non hazardous waste disposed	kg	3.03E+01	1.04E-01	0*	0*	3.02E+01	1.82E-02	-6.21E-03		
Contribution to radioactive waste disposed	kg	5.37E-03	6.86E-05	5.73E-06	0*	5.29E-03	7.10E-07	-2.90E-06		
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to materials for recycling	kg	3.74E-03	4.56E-04	0*	0*	0*	3.28E-03	0.00E+00		
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to exported energy	MJ	4.03E-05	4.92E-06	0*	0*	0*	3.54E-05	0.00E+00		
$\ensuremath{^{\star}}$ represents less than 0.01% of the total life cycle of the reference	erence flow									
Contribution to biogenic carbon content of the product	kg of C	0.00E+00								
Contribution to biogenic carbon content of the associated packaging	kg of C	0.00E+00								

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators		XB7 Monolithic Illuminated Push Button - XB7NW33M1							
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	1.78E+02	0*	0*	0*	0*	0*	1.78E+02	0*
Contribution to climate change-fossil	kg CO2 eq	1.78E+02	0*	0*	0*	0*	0*	1.78E+02	0*
Contribution to climate change-biogenic	kg CO2 eq	2.28E-01	0*	0*	0*	0*	0*	2.28E-01	0*
Contribution to climate change-land use and land use change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	8.20E-07	0*	0*	0*	0*	0*	8.20E-07	0*
Contribution to acidification	mol H+ eq	9.85E-01	0*	0*	0*	0*	0*	9.85E-01	0*
Contribution to eutrophication, freshwater	kg (PO4)³- eq	2.75E-04	0*	0*	0*	0*	0*	2.75E-04	0*
Contribution to eutrophication marine	kg N eq	1.16E-01	0*	0*	0*	0*	0*	1.16E-01	0*
Contribution to eutrophication, terrestrial	mol N eq	1.56E+00	0*	0*	0*	0*	0*	1.56E+00	0*
Contribution to photochemical ozone formation - human health	kg COVNM eq	3.77E-01	0*	0*	0*	0*	0*	3.77E-01	0*
Contribution to resource use, minerals and metals	kg Sb eq	3.87E-05	0*	0*	0*	0*	0*	3.87E-05	0*
Contribution to resource use, fossils	MJ	3.78E+03	0*	0*	0*	0*	0*	3.78E+03	0*
Contribution to water use	m3 eq	1.10E+01	0*	0*	0*	0*	0*	1.10E+01	0*

Inventory flows Indicators	XB7 Monol	ithic Illun	ninated I	Push But	ton - XB7NW33	BM1			
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	7.12E+02	0*	0*	0*	0*	0*	7.12E+02	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	7.12E+02	0*	0*	0*	0*	0*	7.12E+02	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	3.78E+03	0*	0*	0*	0*	0*	3.78E+03	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	3.78E+03	0*	0*	0*	0*	0*	3.78E+03	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	2.56E-01	0*	0*	0*	0*	0*	2.56E-01	0*
Contribution to hazardous waste disposed	kg	5.37E+00	0*	0*	0*	0*	0*	5.37E+00	0*
Contribution to non hazardous waste disposed	kg	3.02E+01	0*	0*	0*	0*	0*	3.02E+01	0*
Contribution to radioactive waste disposed	kg	5.29E-03	0*	0*	0*	0*	0*	5.29E-03	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

 $^{^{\}star}$ represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.2, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology 0/0 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number:	ENVPEP2502022_V1	Drafting rules	PCR-4-ed4-EN-2021 09 06							
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08							
Date of issue	02-2025	Information and reference documents	www.pep-ecopassport.org							
		Validity period	5 years							
Independent verification of the o	eclaration and data, in compliance with ISO 14021 : 2016									
Internal X	Internal X External									
The PCR review was conducted	by a panel of experts chaired by Julie Orgelet (DDemain)									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022										
The components of the present PEP may not be compared with components from any other program.										
Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"										

Schneider Electric Industries SAS
Country Customer Care Center
http://www.se.com/contact
35, rue Joseph Monier
CS 30323

F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 928 298 512 €

www.se.com

Published by Schneider Electric

ENVPEP2502022_V1 ©2024 - Schneider Electric – All rights reserved

02-2025