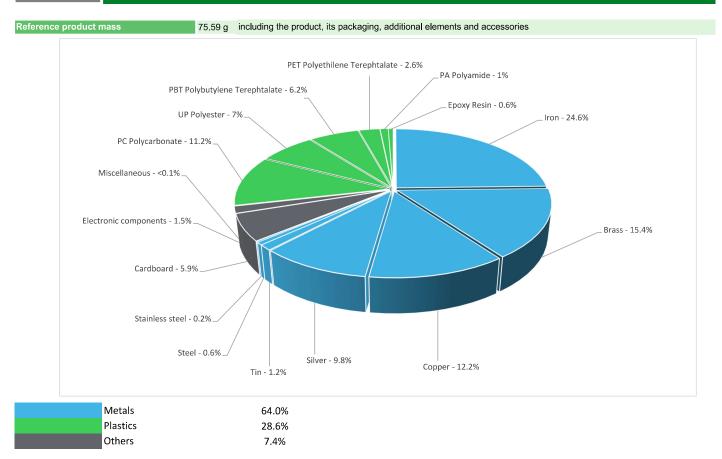
Product Environmental Profile

Harmony RPM Power Plug-in Relay



General information

Reference product	Harmony RPM Power Plug-in Relay - RPM42P7								
Description of the product	The product is an electrically operated switch which enables current to flow through it on one circuit and can switch a current on and off on a second circuit.								
Description of the range	gle product								
Functional unit	To control a circuit by a low-power signal with the complete electrical isolation between the control and controlled circuits or where several circuits must be controlled by one signal majorly in industrial applications. Product has lifetime of 10 years with a 30% use rate and product is adhering to international standards IEC 61810-1.								
Specifications are:	Degree of protection: IP40 conforming to IEC 60529 Operating rate: <= 1200 cycles/hour under load <= 18000 cycles/hour no-load Mechanical durability;10000000 cycles Electrical durability: 100000 cycles for resistive load [Ithe] conventional enclosed thermal current: 15 A at -4055 °C								

Constituent materials

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

(1) Additional environmental information

End Of Life

Recyclability potential:

68%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Reference service life time	10 years										
Product category	Other equipments - Active product										
Life cycle of the product	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study										
Electricity consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption										
Installation elements	The product does not require any installation ope	rations									
Use scenario	The product is in active mode 30% of the time with a power use of 2.2 W and 70% of the time with off mode with power use of 0W for 10 years										
Time representativeness	The collected data are representative of the year 2024										
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are similar and representative of the actual type of technologies used to make the product.										
Geographical	Final assembly site Use phase End-of-life										
representativeness	China Global Global										
	[A1 - A3] [A5] [B6] [C1 - C4]										
Energy model used	Electricity Mix; High voltage; 2020; China, CN	No energy used	Electricity Mix; Low voltage; 2020; Global, GLO	Global, European and French datasets are used.							

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators								
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and Ioads
Contribution to climate change	kg CO2 eq	2.89E+01	7.61E-01	3.96E-02	0*	2.80E+01	1.27E-01	-2.06E-01
Contribution to climate change-fossil	kg CO2 eq	2.87E+01	7.65E-01	3.96E-02	0*	2.77E+01	1.27E-01	-2.04E-01
Contribution to climate change-biogenic	kg CO2 eq	2.92E-01	0*	0*	0*	2.96E-01	4.49E-04	-2.29E-03
Contribution to climate change-land use and land use change	kg CO2 eq	1.32E-05	1.32E-05	0*	0*	0*	2.47E-08	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	3.86E-07	2.31E-07	3.49E-08	0*	1.18E-07	2.55E-09	-6.27E-08
Contribution to acidification	mol H+ eq	1.57E-01	1.31E-02	1.67E-04	0*	1.44E-01	4.31E-04	-2.54E-03
Contribution to eutrophication, freshwater	kg P eq	5.57E-05	1.23E-05	0*	0*	4.32E-05	2.14E-07	-5.90E-07
Contribution to eutrophication, marine	kg N eq	1.85E-02	1.17E-03	7.62E-05	0*	1.72E-02	8.61E-05	-1.24E-04
Contribution to eutrophication, terrestrial	mol N eq	2.37E-01	1.28E-02	8.26E-04	0*	2.22E-01	9.88E-04	-1.40E-03
Contribution to photochemical ozone formation - human health	kg COVNM eq	6.15E-02	4.58E-03	2.73E-04	0*	5.63E-02	2.66E-04	-6.08E-04
Contribution to resource use, minerals and metals	kg Sb eq	6.55E-03	6.54E-03	0*	0*	5.93E-06	0*	-4.25E-05
Contribution to resource use, fossils	MJ	6.04E+02	1.19E+01	4.92E-01	0*	5.91E+02	1.15E+00	-2.94E+00
Contribution to water use	m3 eq	2.24E+00	5.10E-01	2.01E-03	4.20E-04	1.71E+00	1.58E-02	-1.58E-01

Inventory flows Indicators		Harmony RPM Power Plug-in Relay - RPM42P7									
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads			
Contribution to renewable primary energy used as energy	MJ	9.75E+01	1.41E+00	0*	0*	9.60E+01	6.26E-02	-5.75E-02			
Contribution to renewable primary energy used as raw material	MJ	1.44E-02	1.44E-02	0*	0*	0*	0*	0.00E+00			
Contribution to total renewable primary energy	MJ	9.75E+01	1.43E+00	0*	0*	9.60E+01	6.26E-02	-5.75E-02			
Contribution to non renewable primary energy used as energy	MJ	6.04E+02	1.12E+01	4.92E-01	0*	5.91E+02	1.15E+00	-2.94E+00			
Contribution to non renewable primary energy used as raw material	MJ	6.65E-01	6.65E-01	0*	0*	0*	0*	0.00E+00			
Contribution to total non renewable primary energy	MJ	6.04E+02	1.19E+01	4.92E-01	0*	5.91E+02	1.15E+00	-2.94E+00			
Contribution to use of secondary material	kg	4.38E-03	4.38E-03	0*	0*	0*	0*	0.00E+00			
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00			
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00			
Contribution to net use of fresh water	m³	5.23E-02	1.19E-02	4.67E-05	9.79E-06	3.99E-02	4.48E-04	-3.68E-03			
Contribution to hazardous waste disposed	kg	1.84E+01	1.77E+01	0*	0*	6.52E-01	0*	-3.16E+00			
Contribution to non hazardous waste disposed	kg	4.89E+00	3.75E-01	0*	4.60E-03	4.43E+00	8.00E-02	-6.77E-02			
Contribution to radioactive waste disposed	kg	1.06E-03	1.69E-04	7.86E-06	0*	8.82E-04	3.67E-06	-3.32E-05			
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00			
Contribution to materials for recycling	kg	5.37E-02	5.09E-03	0*	0*	0*	4.86E-02	0.00E+00			
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00			
Contribution to exported energy	MJ	5.30E-04	5.15E-05	0*	0*	0*	4.78E-04	0.00E+00			
* represents less than 0.01% of the total life cycle of the referen	nce flow										
Contribution to biogenic carbon content of the product	kg of C	0.00E+00									
Contribution to biogenic carbon content of the associated packaging	kg of C	1.29E-03									

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators				Harmo	ny RPM P	ower Plu	ıg-in Rel	ay - RPM42P7	
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
contribution to climate change	kg CO2 eq	2.80E+01	0*	0*	0*	0*	0*	2.80E+01	0*
contribution to climate change-fossil	kg CO2 eq	2.77E+01	0*	0*	0*	0*	0*	2.77E+01	0*
contribution to climate change-biogenic	kg CO2 eq	2.96E-01	0*	0*	0*	0*	0*	2.96E-01	0*
ontribution to climate change-land use and land use change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
contribution to ozone depletion	kg CFC-11 eq	1.18E-07	0*	0*	0*	0*	0*	1.18E - 07	0*
ontribution to acidification	mol H+ eq	1.44E-01	0*	0*	0*	0*	0*	1.44E-01	0*
entribution to eutrophication, freshwater	kg P eq	4.32E-05	0*	0*	0*	0*	0*	4.32E-05	0*
ntribution to eutrophication marine	kg N eq	1.72E-02	0*	0*	0*	0*	0*	1.72E-02	0*
ribution to eutrophication, terrestrial	mol N eq	2.22E-01	0*	0*	0*	0*	0*	2.22E-01	0*
ntribution to photochemical ozone formation - human health	kg COVNM eq	5.63E-02	0*	0*	0*	0*	0*	5.63E-02	0*
ntribution to resource use, minerals and metals	kg Sb eq	5.93E-06	0*	0*	0*	0*	0*	5.93E-06	0*
ntribution to resource use, fossils	MJ	5.91E+02	0*	0*	0*	0*	0*	5.91E+02	0*
tribution to water use	m3 eq	1.71E+00	0*	0*	0*	0*	0*	1.71E+00	0*

Inventory flows Indicators				Harmo	ony RPM F	Power PI	ug-in Rel	ay - RPM42P7	
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	9.60E+01	0*	0*	0*	0*	0*	9.60E+01	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	9.60E+01	0*	0*	0*	0*	0*	9.60E+01	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	5.91E+02	0*	0*	0*	0*	0*	5.91E+02	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	5.91E+02	0*	0*	0*	0*	0*	5.91E+02	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	3.99E-02	0*	0*	0*	0*	0*	3.99E - 02	0*
Contribution to hazardous waste disposed	kg	6.52E-01	0*	0*	0*	0*	0*	6.52E-01	0*
Contribution to non hazardous waste disposed	kg	4.43E+00	0*	0*	0*	0*	0*	4.43E+00	0*
Contribution to radioactive waste disposed	kg	8.82E-04	0*	0*	0*	0*	0*	8.82E-04	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.3.0.1-4, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2506026_V1	Drafting rules	PEP-PCR-ed4-2021 09 06							
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08							
Date of issue	06-2025	Information and reference documents	www.pep-ecopassport.org							
		Validity period	5 years							
Independent verification of the declaration and data, in compliance with ISO 14021 : 2016										
Internal X	ternal X External									
The PCR review was conducted	by a panel of experts chaired by Julie Orgelet (DDemain)									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022										
The components of the present PEP may not be compared with components from any other program.										
Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"										

Schneider Electric Industries SAS
Country Customer Care Center
http://www.se.com/contact
Head Office
35, rue Joseph Monier
CS 30323
F- 92500 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 928 298 512 €

www.se.com

Published by Schneider Electric