Product Environmental Profile

Harmony RM17 Control Relay

General information

Reference product	Harmony RM17 Control Relay - RM17TE00
Description of the product	A control relay allows electrical current to flow through a conducting coil that opens or closes a switch. It also protects the circuit current. With a control relay, users do not need to manually turn the switch to isolate or change the state of an electric circuit.
Description of the range	Single product
Functional unit	Harmony RM17-TE relay allows monitoring of power supply circuits in 3-phase networks. This modular multi function 3-phase supply control relay is ideal for monitoring of electrical values in industrial and building control panels. It applies to a wide type of industrial automation applications such as hoisting, packaging, lifts, textile, water. It works with power consumption of 2.7 W in 80% active mode with life span of 10 years.
Specifications are:	IP Degree Of Protection: IP20 (terminals) conforming to IEC 60529 IP30 (casing) conforming to IEC 60529 Vibration Resistance: 0.35 mm (f= 557.6 Hz) conforming to IEC 60068-2-6 1 gn (f= 57.6150 Hz) conforming to IEC 60255-21-1 Shock Resistance: 15 gn for 11 ms conforming to IEC 60255-21-1 Relative Humidity: 95 % at 55 °C conforming to IEC 60068-2-30

Constituent materials

Reference product mass 80.32 g including the product, its packaging and additional elements and accessories PC Polycarbonate - 29.06% Paper - 1.12% _ Cardboard - 9.84% PA Polyamide - 14.32% POM Polyoxymethylene - 1.44% PMMA Polymethyl Methacrylate - 0.5% UP Polyester - 0.12% Steel - 3.54% Electronic components - 31.76% Brass - 5.77% Copper - 2.53% Plastics 45.44% Others 42.72% Metals 11.84%

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website https://www.se.com/ww/en/work/support/green-premium/

(1) Additional environmental information

End Of Life

Recyclability potential:

13%

The recyclability rate was calculated from the recycling rates of each material making up the product with the exception of data using the ESR database. For materials or components using the ESR database or the absence of data the conservative hypothesis "0% recyclability" was used.

Environmental impacts

Reference service life time	10 years									
Product category	Other equipments - Active product									
Installation elements	The product doesn't require special installation procedure and requires little to no energy to install									
Use scenario	The product is in active mode 80% of the time with a power use of 2.7W and in off mode 20% of the time with a power use of 0W for 10 years									
Time representativeness	The collected data are representative of the year	The collected data are representative of the year 2024								
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product.									
Geographical representativeness	Rest of the World									
	[A1 - A3] [A5] [B6] [C1 - C4]									
		Electricity Mix; Low voltage; 2018; Asia Pacific, APAC	Electricity Mix; Low voltage; 2018; Asia Pacific, APAC	Electricity Mix; Low voltage; 2018; Asia Pacific, APAC						
Energy model used	Electricity Mix; High voltage; 2018; Indonesia,	Electricity Mix; Low voltage; 2018; Europe, EU-27	Electricity Mix; Low voltage; 2018; Europe, EU-27	Electricity Mix; Low voltage; 2018; Europe, EU-27						
	ID	Electricity Mix; Low voltage; 2018; United States, US	Electricity Mix; Low voltage; 2018; United States, US	Electricity Mix; Low voltage; 2018; United States, US						
		Electricity Mix; Low voltage; 2018; Brazil, BR	Electricity Mix; Low voltage; 2018; Brazil, BR	Electricity Mix; Low voltage; 2018; Brazil, BR						

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.schneiderelectric.com/contact

Mandatory Indicators				Harmony RM1	7 Control Relay	- RM17TE00		
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	9.76E+01	1.72E+00	2.25E-01	3.40E-04	9.54E+01	2.05E-01	-3.74E-02
Contribution to climate change-fossil	kg CO2 eq	9.75E+01	1.71E+00	2.25E-01	3.40E-04	9.53E+01	2.05E-01	-3.69E-02
Contribution to climate change-biogenic	kg CO2 eq	1.07E-01	1.54E-02	0*	0*	9.10E-02	4.08E-04	-4.63E-04
Contribution to climate change-land use and land use change	e kg CO2 eq	2.80E-05	2.80E-05	0*	0*	0*	6.89E-09	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	8.71E-07	2.37E-07	1.97E-07	1.35E-11	4.37E-07	3.68E-10	-9.69E-09
Contribution to acidification	mol H+ eq	6.00E-01	1.36E-02	9.22E-04	4.58E-06	5.85E-01	2.46E-04	-5.18E-04
Contribution to eutrophication, freshwater	kg (PO4)³¯ eq	1.87E-04	1.45E-05	2.62E-08	1.69E-09	1.58E-04	1.36E-05	-8.97E-08
Contribution to eutrophication marine	kg N eq	6.76E-02	1.64E-03	4.20E-04	2.17E-06	6.54E-02	7.77E-05	-2.32E-05
Contribution to eutrophication, terrestrial	mol N eq	9.04E-01	1.76E-02	4.55E-03	2.21E-05	8.81E-01	8.51E-04	-2.66E-04
Contribution to photochemical ozone formation - human health	kg COVNM eq	2.21E-01	5.72E-03	1.52E-03	5.30E-06	2.14E-01	2.22E-04	-1.15E-04
Contribution to resource use, minerals and metals	kg Sb eq	3.93E-04	3.88E-04	0*	1.48E-11	4.66E-06	4.12E-07	-9.21E-06
Contribution to resource use, fossils	MJ	2.08E+03	2.49E+01	2.78E+00	3.90E-03	2.05E+03	1.83E+00	-6.21E-01
Contribution to water use	m3 eq	4.03E+00	4.10E-01	1.13E-02	8.06E-04	3.58E+00	2.79E-02	-2.99E-02

02-2025 ENVPEP1601001_V2

Inventory flows Indicators	Harmony RM17 Control Relay - RM17TE00							
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	3.58E+02	6.96E-01	1.82E-05	2.83E-06	3.57E+02	0*	-1.23E-02
Contribution to use of renewable primary energy resources used as raw material	MJ	1.80E-01	1.80E-01	0*	0*	0*	0*	0.00E+00
Contribution to total use of renewable primary energy resources	MJ	3.58E+02	8.76E-01	1.82E-05	2.83E-06	3.57E+02	0*	-1.23E-02
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	2.08E+03	2.35E+01	2.78E+00	3.90E-03	2.05E+03	1.83E+00	-6.21E-01
Contribution to use of non renewable primary energy resources used as raw material	MJ	1.43E+00	1.43E+00	0*	0*	0*	0*	0.00E+00
Contribution to total use of non-renewable primary energy resources	MJ	2.08E+03	2.49E+01	2.78E+00	3.90E-03	2.05E+03	1.83E+00	-6.21E-01
Contribution to use of secondary material	kg	7.00E-06	7.00E-06	0*	0*	0*	0*	0.00E+00
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to net use of freshwater	m³	9.41E-02	9.89E-03	2.64E-04	1.88E-05	8.32E-02	6.49E-04	-6.95E-04
Contribution to hazardous waste disposed	kg	4.33E+00	2.23E+00	1.85E-04	2.03E-06	2.07E+00	2.55E-02	-7.41E-01
Contribution to non hazardous waste disposed	kg	1.50E+01	4.78E-01	2.27E-04	8.81E-03	1.45E+01	3.97E-02	-1.67E-02
Contribution to radioactive waste disposed	kg	2.55E-03	2.59E-04	4.44E-05	7.14E-09	2.24E-03	1.67E-06	-7.91E-06
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to materials for recycling	kg	1.07E-02	1.40E-03	0*	0*	0*	9.32E-03	0.00E+00
Contribution to materials for energy recovery	kg	6.86E-09	6.86E-09	0*	0*	0*	0*	0.00E+00
Contribution to exported energy	MJ	1.07E-04	1.52E-05	0*	0*	0*	9.21E-05	0.00E+00
* represents less than 0.01% of the total life cycle of the refe	erence flow							
Contribution to biogenic carbon content of the product	kg of C	0.00E+00						
Contribution to biogenic carbon content of the associated packaging	kg of C	2.56E-03						

Mandatory Indicators			Harn	nony RM1	7 Contro	ol Relay ·	RM17TE00		
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	9.54E+01	0*	0*	0*	0*	0*	9.54E+01	0*
Contribution to climate change-fossil	kg CO2 eq	9.53E+01	0*	0*	0*	0*	0*	9.53E+01	0*
Contribution to climate change-biogenic	kg CO2 eq	9.10E-02	0*	0*	0*	0*	0*	9.10E-02	0*
Contribution to climate change-land use and land use chang	ge kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	4.37E-07	0*	0*	0*	0*	0*	4.37E-07	0*
contribution to acidification	mol H+ eq	5.85E-01	0*	0*	0*	0*	0*	5.85E-01	0*
ontribution to eutrophication, freshwater	kg (PO4)³ ⁻ eq	1.58E-04	0*	0*	0*	0*	0*	1.58E-04	0*
ontribution to eutrophication marine	kg N eq	6.54E-02	0*	0*	0*	0*	0*	6.54E-02	0*
ontribution to eutrophication, terrestrial	mol N eq	8.81E-01	0*	0*	0*	0*	0*	8.81E-01	0*
ontribution to photochemical ozone formation - human ealth	kg COVNM eq	2.14E-01	0*	0*	0*	0*	0*	2.14E-01	0*
Contribution to resource use, minerals and metals	kg Sb eq	4.66E-06	0*	0*	0*	0*	0*	4.66E-06	0*
ontribution to resource use, fossils	MJ	2.05E+03	0*	0*	0*	0*	0*	2.05E+03	0*
ontribution to water use	m3 eq	3.58E+00	0*	0*	0*	0*	0*	3.58E+00	0*

Inventory flows Indicators	Hai					armony RM17 Control Relay - RM17TE00					
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]		
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	3.57E+02	0*	0*	0*	0*	0*	3.57E+02	0*		
ontribution to use of renewable primary energy resources sed as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*		
ntribution to total use of renewable primary energy ources	MJ	3.57E+02	0*	0*	0*	0*	0*	3.57E+02	0*		
ntribution to use of non renewable primary energy cluding non renewable primary energy used as raw terial	MJ	2.05E+03	0*	0*	0*	0*	0*	2.05E+03	0*		
ntribution to use of non renewable primary energy cources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*		
tribution to total use of non-renewable primary energy burces	MJ	2.05E+03	0*	0*	0*	0*	0*	2.05E+03	0*		
tribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*		
ibution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*		
ribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*		
ribution to net use of freshwater	m³	8.32E-02	0*	0*	0*	0*	0*	8.32E-02	0*		
tribution to hazardous waste disposed	kg	2.07E+00	0*	0*	0*	0*	0*	2.07E+00	0*		
ribution to non hazardous waste disposed	kg	1.45E+01	0*	0*	0*	0*	0*	1.45E+01	0*		
tribution to radioactive waste disposed	kg	2.24E-03	0*	0*	0*	0*	0*	2.24E-03	0*		
ribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*		
ribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*		
ribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*		
stribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*		

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2-6, database version 2024-04 in compliance with ISO14044, EF 3.0 method is applied, for biogenic carbon storage, assessment methodology 0/0 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :		ENVPEP1601001_V2	Drafting rules	PCR-4-ed4-EN-2021 09 06					
Date of issue			Supplemented by	PSR-0005-ed3.1-EN-2023 12 08					
		02-2025	Information and reference documents	www.pep-ecopassport.org					
			Validity period	5 years					
Independent veri	fication of the d	eclaration and data, in compliance with ISO 14021 : 2016							
Internal	X	External							
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022									
The components of the present PEP may not be compared with components from any other program.									
Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"									

Schneider Electric Industries SAS
Country Customer Care Center
http://www.se.com/contact
35, rue Joseph Monier
CS 30323
F- 92500 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 928 298 512 €

www.se.com

Published by Schneider Electric