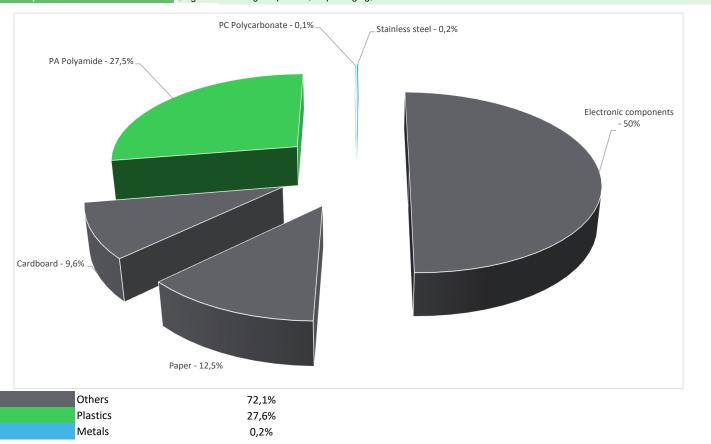
Product Environmental Profile

Communication module, TeSys Ultra, 24VDC, Modbus RTU, front side



General information

Reference product	Communication module, TeSys Ultra, 24VDC, Modbus RTU, front side - LULC033
Description of the product	TeSys U communication module for Modbus, to be inserted in advanced power bases LUB120, LUB320, LUB380 equipped with a BL type (24V DC) LUC control unit. It provides a RJ45 connector for connection to a Modbus network, a plug-in terminal block for the connection to an external power supply 24V DC, in addition with 2 x configurable logic inputs 24V DC and 1 x logic output 24V DC. On front side, a 3-point plug-in terminal block is provided for the local control of the starter controller, to be associated with a control terminal block LU9BN11C for a LUB base or LU9MRC for a LU2B base. It displays 3 LEDs indicating 24V voltage presence (24V=) and communication status (COMM, ERR). Certified when used in conjunction with a LUB power base (IEC, UL, CSA, CCC, EAC, Marine).
Description of the range	Single product
Functional unit	Other switchgear and controlgear solutions mentioned in the scope (e.g. fuses TC32, all-or-nothing relays TC94, Measuring relays and protection equipment TC95), apply the general rules of PCR and mention in the accompanying report the functional unit, the reference product characteristics, the reference lifetime and the use scenario which are applied consistently with the relevant IEC technical standards.
Specifications are:	Ensure relays and communication in advanced power bases during a lifetime of 10 years by indicating 24V voltage presence (24V=) and communication status (COMM, ERR).

Constituent materials

Reference product mass 87 g including the product, its packaging, additional elements and accessories

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website $\underline{\text{https://www.se.com}}$

(1) Additional environmental information

End Of Life

Recyclability potential:

0,29%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Tenvironmental impacts

Reference service life time	10 years									
Product category	Other equipments - Active product									
Life cycle of the product	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study									
Electricity consumtion	The electricity consumed during manufacturing progenerates a negligable consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption								
Installation elements	The product does not require any installation operation	ations								
Use scenario	Consumption : Active mode : 0,72W => 100% of time									
Time representativeness	The collected data are representative of the year 2024									
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product.									
Geographical	Final assembly site Use phase End-of-life									
representativeness	Angoulême, Les agriers, France	Angoulême, Les agriers, France At least in Europe At least in Europe								
	[A1 - A3] [A5] [B6] [C1 - C4]									
Energy model used	Electricity Mix; Low voltage; 2020; France, FR	No energy used	Electricity Mix; Low voltage; 2020; Europe, EU-27	Global, European and French datasets are used.						

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators		Communication n	nodule, TeSys U	ltra, 24VDC, Mo	dbus RTU, front si	ide - LULC033		
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	3,21E+01	6,41E+00	1,69E-02	0*	2,55E+01	2,03E-01	-7,46E-04
Contribution to climate change-fossil	kg CO2 eq	3,16E+01	6,44E+00	1,69E-02	0*	2,49E+01	2,03E-01	-7,44E-04
Contribution to climate change-biogenic	kg CO2 eq	5,33E-01	0*	0*	0*	5,63E-01	0*	-1,65E-06
Contribution to climate change-land use and land use change	kg CO2 eq	1,59E-07	1,59E-07	0*	0*	0*	0*	0,00E+00
Contribution to ozone depletion	kg CFC-11 eq	9,73E-07	8,63E-07	0*	0*	1,09E-07	1,63E-10	-1,10E-10
Contribution to acidification	mol H+ eq	1,78E-01	4,45E-02	1,07E-04	0*	1,33E-01	1,38E-04	-4,41E-06
Contribution to eutrophication, freshwater	kg P eq	8,52E-05	2,32E-05	0*	0*	6,11E-05	9,91E-07	-1,13E-09
Contribution to eutrophication marine	kg N eq	2,03E-02	4,53E-03	5,03E-05	4,78E-06	1,56E-02	6,72E-05	-4,31E-07
Contribution to eutrophication, terrestrial	mol N eq	3,00E-01	4,81E-02	5,52E-04	4,86E-05	2,50E-01	6,92E-04	-5,03E-06
Contribution to photochemical ozone formation - human health	kg COVNM eq	6,64E-02	1,66E-02	1,39E-04	1,17E-05	4,95E-02	1,68E-04	-1,76E-06
Contribution to resource use, minerals and metals	kg Sb eq	1,86E-03	1,85E-03	0*	0*	8,27E-06	0*	-2,40E-07
Contribution to resource use, fossils	MJ	6,99E+02	8,67E+01	2,36E-01	0*	6,11E+02	2,88E-01	-1,75E-02
Contribution to water use	m3 eq	5,90E+00	3,95E+00	0*	1,78E-03	1,93E+00	7,51E-03	-3,21E-04

Inventory flows Indicators	•	Communication n	nodule, TeSys U	ltra, 24VDC, Mo	dbus RTU, front s	ide - LULC033		
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	1,46E+02	2,56E+00	0*	0*	1,43E+02	0*	-1,39E-04
Contribution to use of renewable primary energy resources used as raw material	MJ	3,23E-01	3,23E-01	0*	0*	0*	0*	0,00E+00
Contribution to total use of renewable primary energy resources	MJ	1,46E+02	2,88E+00	0*	0*	1,43E+02	0*	-1,39E-04
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	6,98E+02	8,56E+01	2,36E-01	0*	6,11E+02	2,88E-01	-1,75E-02
Contribution to use of non renewable primary energy resources used as raw material	MJ	1,06E+00	1,06E+00	0*	0*	0*	0*	0,00E+00
Contribution to total use of non-renewable primary energy resources	MJ	6,99E+02	8,67E+01	2,36E-01	0*	6,11E+02	2,88E-01	-1,75E-02
Contribution to use of secondary material	kg	6,65E-03	6,65E-03	0*	0*	0*	0*	0,00E+00
Contribution to use of renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to use of non renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to net use of freshwater	m³	1,37E-01	9,21E-02	0*	4,14E-05	4,52E-02	1,75E-04	-7,48E-06
Contribution to hazardous waste disposed	kg	3,92E+01	3,84E+01	0*	0*	7,04E-01	4,39E-02	-1,89E-02
Contribution to non hazardous waste disposed	kg	5,47E+00	1,58E+00	5,95E-04	1,94E-02	3,84E+00	2,64E-02	-6,18E-04
Contribution to radioactive waste disposed	kg	1,79E-03	8,81E-04	4,23E-07	0*	9,06E-04	1,24E-06	-2,78E-07
Contribution to components for reuse	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to materials for recycling	kg	2,35E-04	3,92E-05	0*	0*	0*	1,96E-04	0,00E+00
Contribution to materials for energy recovery	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to exported energy	MJ	3,87E-06	1,93E-06	0*	0*	0*	1,94E-06	0,00E+00
* represents less than 0.01% of the total life cycle of the referen	ice flow							
Contribution to biogenic carbon content of the product	kg of C	0,00E+00						
Contribution to biogenic carbon content of the associated packaging	kg of C	6,51E-03						

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators		C	ommuni	cation module	e, TeSys U	ltra, 24V	DC, Mod	bus RTU, front	side - LULC033
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	2,55E+01	0*	0*	0*	0*	0*	2,55E+01	0*
Contribution to climate change-fossil	kg CO2 eq	2,49E+01	0*	0*	0*	0*	0*	2,49E+01	0*
Contribution to climate change-biogenic	kg CO2 eq	5,63E-01	0*	0*	0*	0*	0*	5,63E-01	0*
Contribution to climate change-land use and land use change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	1,09E-07	0*	0*	0*	0*	0*	1,09E-07	0*
Contribution to acidification	mol H+ eq	1,33E-01	0*	0*	0*	0*	0*	1,33E-01	0*
Contribution to eutrophication, freshwater	kg P eq	6,11E-05	0*	0*	0*	0*	0*	6,11E-05	0*
Contribution to eutrophication marine	kg N eq	1,56E-02	0*	0*	0*	0*	0*	1,56E-02	0*
Contribution to eutrophication, terrestrial	mol N eq	2,50E-01	0*	0*	0*	0*	0*	2,50E-01	0*
Contribution to photochemical ozone formation - human health	kg COVNM eq	4,95E-02	0*	0*	0*	0*	0*	4,95E-02	0*
Contribution to resource use, minerals and metals	kg Sb eq	8,27E-06	0*	0*	0*	0*	0*	8,27E-06	0*
Contribution to resource use, fossils	MJ	6,11E+02	0*	0*	0*	0*	0*	6,11E+02	0*
Contribution to water use	m3 eq	1,93E+00	0*	0*	0*	0*	0*	1,93E+00	0*

Inventory flows Indicators		C	ommun	nication module	, TeSys U	ltra, 24V	DC, Mod	bus RTU, front	side - LULC033
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	1,43E+02	0*	0*	0*	0*	0*	1,43E+02	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	1,43E+02	0*	0*	0*	0*	0*	1,43E+02	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	6,11E+02	0*	0*	0*	0*	0*	6,11E+02	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	6,11E+02	0*	0*	0*	0*	0*	6,11E+02	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	4,52E-02	0*	0*	0*	0*	0*	4,52E-02	0*
Contribution to hazardous waste disposed	kg	7,04E-01	0*	0*	0*	0*	0*	7,04E-01	0*
Contribution to non hazardous waste disposed	kg	3,84E+00	0*	0*	0*	0*	0*	3,84E+00	0*
Contribution to radioactive waste disposed	kg	9,06E-04	0*	0*	0*	0*	0*	9,06E-04	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.4, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	SCHN-02024-V01.01-EN	Drafting rules	PEP-PCR-ed4-2021 09 06					
		Supplemented by	PSR-0005-ed3-2023 06 06					
Verifier accreditation N°	VH08	Information and reference documents	www.pep-ecopassport.org					
Date of issue 01/06/2025 Validity period 5 years								
Independent verification of the declaration and data, in compliance with ISO 14025: 2006								

Internal External

The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)

PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022

The components of the present PEP may not be compared with components from any other program.

Document complies with ISO 14025:2006 "Environmental labels and declarations." Type III environmental declarations"

Schneider Electric Industries SAS

Country Customer Care Center http://www.se.com/contact

Head Office

35, rue Joseph Monier

CS 30323

F- 92500 Rueil Malmaison Cedex

RCS Nanterre 954 503 439

Capital social 928 298 512 €

SCHN-02024-V01.01-EN

www.se.com

Published by Schneider Electric

©2024 - Schneider Electric - All rights reserved

01/06/2025