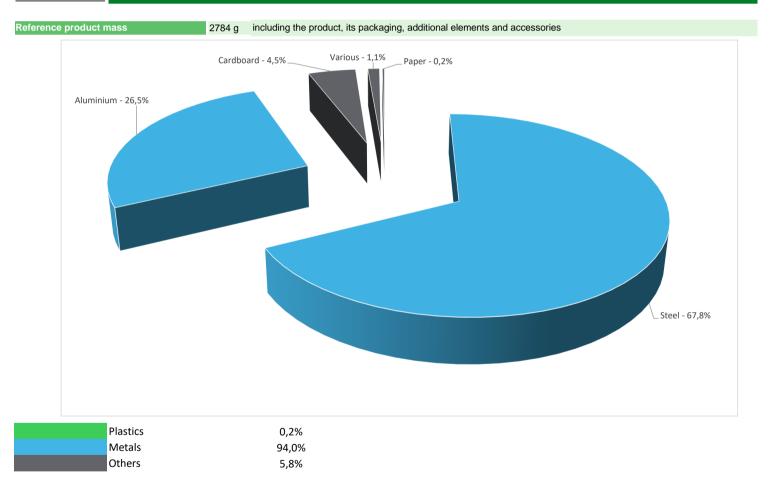

# **Product Environmental Profile**

#### **Lexium GBX**








ENVPEP111245EN\_V3 09-2025

#### General information

| Reference product          | Lexium GBX - GBX080012K                                                                                                                                                                                                                       |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of the product | The Lexium GBX is a mechanical transmission unit designed to adapt speed and troque of a motor to the operationally requirements of Motion control. it enable precise and efficient movement across a wide range of applications.             |
| Description of the range   | The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology. This range consists of gearboxes GBX040 to GBX160 from 5 Nm to 800 Nm |
| Functional unit            | To convert the torque supplied by the motor to control the movement of the moving load of the machine process during 20 years and a 50% use rate at 52,36 W.                                                                                  |
| Specifications are:        | Outer diameter reducer: 80 mm Reduction ratio: 12:1 Maximum torsion play: 9 arc.min Torsional stiffness: 6.5 N.m/arcmin                                                                                                                       |

## <u>&</u>

#### **Constituent materials**



## Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website <a href="https://www.se.com">https://www.se.com</a>

ENVPEP111245EN\_V3 09-2025

#### (19) Additional environmental information

End Of Life

Recyclability potential:

97%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).



### **Tenvironmental impacts**

| Reference service life time        | 20 years                                                                                                                                                                                                                                              |                |                                                                                                                                                                      |                                                |  |  |  |  |  |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|--|--|--|--|
| Product category                   | Other equipments - Passive product - non-continuous operation                                                                                                                                                                                         |                |                                                                                                                                                                      |                                                |  |  |  |  |  |  |  |
| Life cycle of the product          | The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study                                                                                                                        |                |                                                                                                                                                                      |                                                |  |  |  |  |  |  |  |
| Electricity consumption            | The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption                                                                                |                |                                                                                                                                                                      |                                                |  |  |  |  |  |  |  |
| Installation elements              | This product does not require any installation ope                                                                                                                                                                                                    | erations.      |                                                                                                                                                                      |                                                |  |  |  |  |  |  |  |
| Use scenario                       | Assumed service lifetime is 20 years and use scenario is : - Active phase: consumed power 52,36 W during 50 % uptime - Off phase: consumed power 0 W during 50 % uptime                                                                               |                |                                                                                                                                                                      |                                                |  |  |  |  |  |  |  |
| Time representativeness            | The collected data are representative of the year 2025                                                                                                                                                                                                |                |                                                                                                                                                                      |                                                |  |  |  |  |  |  |  |
| Technological representativeness   | The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are similar and representative of the actual type of technologies used to make the product. |                |                                                                                                                                                                      |                                                |  |  |  |  |  |  |  |
| Coornelied                         | Final assembly site                                                                                                                                                                                                                                   | Use p          | hase                                                                                                                                                                 | End-of-life                                    |  |  |  |  |  |  |  |
| Geographical<br>representativeness | Lahr (Germany)  Europe (36%), China (42%), US (21%)  Europe (36%), China (42%), US (21%)  US (21%)                                                                                                                                                    |                |                                                                                                                                                                      |                                                |  |  |  |  |  |  |  |
|                                    | [A1 - A3] [A5] [B6] [C1 - C4]                                                                                                                                                                                                                         |                |                                                                                                                                                                      |                                                |  |  |  |  |  |  |  |
| Energy model used                  | Electricity Mix; Low voltage; 2020; Germany, DE                                                                                                                                                                                                       | No energy used | Electricity Mix; Low voltage;<br>2020; Europe, EU-27<br>Electricity Mix; Low voltage;<br>2020; China, CN<br>Electricity Mix; Low voltage;<br>2020; United States, US | Global, European and French datasets are used. |  |  |  |  |  |  |  |

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

| Mandatory Indicators                                         | Lexium GBX - GBX080012K |                             |                              |                        |                        |                 |                            |                             |  |
|--------------------------------------------------------------|-------------------------|-----------------------------|------------------------------|------------------------|------------------------|-----------------|----------------------------|-----------------------------|--|
| Impact indicators                                            | Unit                    | Total (without<br>Module D) | [A1 - A3] -<br>Manufacturing | [A4] -<br>Distribution | [A5] -<br>Installation | [B1 - B7] - Use | [C1 - C4] - End<br>of life | [D] - Benefits<br>and loads |  |
| Contribution to climate change                               | kg CO2 eq               | 1,93E+03                    | 1,21E+01                     | 5,87E-01               | 0*                     | 1,91E+03        | 3,39E+00                   | -1,70E+01                   |  |
| Contribution to climate change-fossil                        | kg CO2 eq               | 1,89E+03                    | 1,23E+01                     | 5,87E-01               | 0*                     | 1,87E+03        | 3,36E+00                   | -1,69E+01                   |  |
| Contribution to climate change-biogenic                      | kg CO2 eq               | 4,20E+01                    | 0*                           | 0*                     | 6,60E-03               | 4,22E+01        | 2,66E-02                   | -1,66E-01                   |  |
| Contribution to climate change-land use and land use change  | kg CO2 eq               | 1,52E-06                    | 2,72E-07                     | 0*                     | 0*                     | 0*              | 1,25E-06                   | 0,00E+00                    |  |
| Contribution to ozone depletion                              | kg CFC-11<br>eq         | 1,17E-05                    | 2,86E-06                     | 5,19E-07               | 1,80E-09               | 8,19E-06        | 1,43E-07                   | -2,40E-06                   |  |
| Contribution to acidification                                | mol H+ eq               | 1,01E+01                    | 6,89E-02                     | 2,61E-03               | 0*                     | 1,00E+01        | 1,87E-02                   | -1,07E-01                   |  |
| Contribution to eutrophication, freshwater                   | kg P eq                 | 4,62E-03                    | 3,04E-05                     | 0*                     | 3,19E-06               | 4,58E-03        | 1,11E-05                   | -5,07E-05                   |  |
| Contribution to eutrophication, marine                       | kg N eq                 | 1,19E+00                    | 1,08E-02                     | 1,21E-03               | 1,77E-04               | 1,17E+00        | 3,37E-03                   | -9,73E-03                   |  |
| Contribution to eutrophication, terrestrial                  | mol N eq                | 1,89E+01                    | 1,18E-01                     | 1,31E-02               | 0*                     | 1,88E+01        | 3,83E-02                   | -1,09E-01                   |  |
| Contribution to photochemical ozone formation - human health | kg COVNM<br>eq          | 3,77E+00                    | 3,96E-02                     | 4,26E-03               | 0*                     | 3,71E+00        | 1,07E-02                   | -3,68E-02                   |  |
| Contribution to resource use, minerals and metals            | kg Sb eq                | 7,91E-04                    | 1,70E-04                     | 0*                     | 0*                     | 6,20E-04        | 5,02E-07                   | -2,27E-03                   |  |
| Contribution to resource use, fossils                        | MJ                      | 4,64E+04                    | 4,54E+02                     | 7,32E+00               | 0*                     | 4,59E+04        | 5,17E+01                   | -3,02E+02                   |  |
| Contribution to water use                                    | m3 eq                   | 1,49E+02                    | 3,34E+00                     | 2,99E-02               | 0*                     | 1,45E+02        | 5,67E-01                   | -4,97E+00                   |  |

ENVPEP111245EN\_V3 09-2025

| Inventory flows Indicators                                         | Lexium GBX - GBX080012K |                             |                              |                        |                        |                 |                            |                             |  |
|--------------------------------------------------------------------|-------------------------|-----------------------------|------------------------------|------------------------|------------------------|-----------------|----------------------------|-----------------------------|--|
| Inventory flows                                                    | Unit                    | Total (without<br>Module D) | [A1 - A3] -<br>Manufacturing | [A4] -<br>Distribution | [A5] -<br>Installation | [B1 - B7] - Use | [C1 - C4] - End<br>of life | [D] - Benefits<br>and loads |  |
| Contribution to renewable primary energy used as energy            | MJ                      | 1,07E+04                    | 4,74E+00                     | 0*                     | 0*                     | 1,07E+04        | 2,86E+00                   | -7,31E+00                   |  |
| Contribution to renewable primary energy used as raw material      | MJ                      | 4,79E+00                    | 4,79E+00                     | 0*                     | 0*                     | 0*              | 0*                         | -1,92E+00                   |  |
| Contribution to total renewable primary energy                     | MJ                      | 1,08E+04                    | 9,53E+00                     | 0*                     | 0*                     | 1,07E+04        | 2,86E+00                   | -9,23E+00                   |  |
| Contribution to non renewable primary energy used as energy        | MJ                      | 4,64E+04                    | 4,52E+02                     | 7,32E+00               | 0*                     | 4,59E+04        | 5,17E+01                   | -3,02E+02                   |  |
| Contribution to non renewable primary energy used as raw material  | MJ                      | 2,01E+00                    | 2,01E+00                     | 0*                     | 0*                     | 0*              | 0*                         | 0,00E+00                    |  |
| Contribution to total non renewable primary energy                 | MJ                      | 4,64E+04                    | 4,54E+02                     | 7,32E+00               | 0*                     | 4,59E+04        | 5,17E+01                   | -3,02E+02                   |  |
| Contribution to use of secondary material                          | kg                      | 1,07E+00                    | 1,07E+00                     | 0*                     | 0*                     | 0*              | 0*                         | 0,00E+00                    |  |
| Contribution to use of renewable secondary fuels                   | MJ                      | 0,00E+00                    | 0*                           | 0*                     | 0*                     | 0*              | 0*                         | 0,00E+00                    |  |
| Contribution to use of non renewable secondary fuels               | MJ                      | 0,00E+00                    | 0*                           | 0*                     | 0*                     | 0*              | 0*                         | 0,00E+00                    |  |
| Contribution to net use of fresh water                             | m³                      | 3,48E+00                    | 7,87E-02                     | 6,95E-04               | 0*                     | 3,39E+00        | 1,74E-02                   | -1,16E-01                   |  |
| Contribution to hazardous waste disposed                           | kg                      | 6,05E+01                    | 7,66E+00                     | 0*                     | 0*                     | 5,28E+01        | 3,23E-02                   | -1,80E+02                   |  |
| Contribution to non hazardous waste disposed                       | kg                      | 3,02E+02                    | 1,11E+01                     | 0*                     | 5,95E-02               | 2,88E+02        | 2,54E+00                   | -2,30E+01                   |  |
| Contribution to radioactive waste disposed                         | kg                      | 7,71E-02                    | 8,94E-03                     | 1,17E-04               | 0*                     | 6,79E-02        | 1,46E-04                   | -1,63E-02                   |  |
| Contribution to components for reuse                               | kg                      | 0,00E+00                    | 0*                           | 0*                     | 0*                     | 0*              | 0*                         | 0,00E+00                    |  |
| Contribution to materials for recycling                            | kg                      | 2,79E+00                    | 2,19E-01                     | 0*                     | 0*                     | 0*              | 2,57E+00                   | 0,00E+00                    |  |
| Contribution to materials for energy recovery                      | kg                      | 0,00E+00                    | 0*                           | 0*                     | 0*                     | 0*              | 0*                         | 0,00E+00                    |  |
| Contribution to exported energy                                    | MJ                      | 3,34E-02                    | 2,22E-03                     | 0*                     | 5,68E-03               | 0*              | 2,55E-02                   | 0,00E+00                    |  |
| * represents less than 0.01% of the total life cycle of the refere |                         |                             |                              |                        |                        |                 |                            |                             |  |

 $<sup>^{\</sup>star}$  represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product kg of C 0,00E+00 Contribution to biogenic carbon content of the associated packaging kg of C 3,70E-02

\* The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

| Mandatory Indicators                                         |                 |                 |      |      | Lexiu | n GBX - | GBX0800 | 12K      |      |  |
|--------------------------------------------------------------|-----------------|-----------------|------|------|-------|---------|---------|----------|------|--|
| Impact indicators                                            | Unit            | [B1 - B7] - Use | [B1] | [B2] | [B3]  | [B4]    | [B5]    | [B6]     | [B7] |  |
| Contribution to climate change                               | kg CO2 eq       | 1,91E+03        | 0*   | 0*   | 0*    | 0*      | 0*      | 1,91E+03 | 0*   |  |
| Contribution to climate change-fossil                        | kg CO2 eq       | 1,87E+03        | 0*   | 0*   | 0*    | 0*      | 0*      | 1,87E+03 | 0*   |  |
| Contribution to climate change-biogenic                      | kg CO2 eq       | 4,22E+01        | 0*   | 0*   | 0*    | 0*      | 0*      | 4,22E+01 | 0*   |  |
| Contribution to climate change-land use and land use change  | kg CO2 eq       | 0*              | 0*   | 0*   | 0*    | 0*      | 0*      | 0*       | 0*   |  |
| Contribution to ozone depletion                              | kg CFC-11<br>eq | 8,19E-06        | 0*   | 0*   | 0*    | 0*      | 0*      | 8,19E-06 | 0*   |  |
| Contribution to acidification                                | mol H+ eq       | 1,00E+01        | 0*   | 0*   | 0*    | 0*      | 0*      | 1,00E+01 | 0*   |  |
| Contribution to eutrophication, freshwater                   | kg P eq         | 4,58E-03        | 0*   | 0*   | 0*    | 0*      | 0*      | 4,58E-03 | 0*   |  |
| Contribution to eutrophication marine                        | kg N eq         | 1,17E+00        | 0*   | 0*   | 0*    | 0*      | 0*      | 1,17E+00 | 0*   |  |
| Contribution to eutrophication, terrestrial                  | mol N eq        | 1,88E+01        | 0*   | 0*   | 0*    | 0*      | 0*      | 1,88E+01 | 0*   |  |
| Contribution to photochemical ozone formation - human health | kg COVNM<br>eq  | 3,71E+00        | 0*   | 0*   | 0*    | 0*      | 0*      | 3,71E+00 | 0*   |  |
| Contribution to resource use, minerals and metals            | kg Sb eq        | 6,20E-04        | 0*   | 0*   | 0*    | 0*      | 0*      | 6,20E-04 | 0*   |  |
| Contribution to resource use, fossils                        | MJ              | 4,59E+04        | 0*   | 0*   | 0*    | 0*      | 0*      | 4,59E+04 | 0*   |  |
| Contribution to water use                                    | m3 eq           | 1,45E+02        | 0*   | 0*   | 0*    | 0*      | 0*      | 1,45E+02 | 0*   |  |
|                                                              |                 |                 |      |      |       |         |         |          |      |  |

ENVPEP111245EN\_V3 09-2025

| Inventory flows Indicators                                                                                      |      |                 |      |      |      |      | Lexium GBX - GBX080012K |          |      |  |  |
|-----------------------------------------------------------------------------------------------------------------|------|-----------------|------|------|------|------|-------------------------|----------|------|--|--|
| Inventory flows                                                                                                 | Unit | [B1 - B7] - Use | [B1] | [B2] | [B3] | [B4] | [B5]                    | [B6]     | [B7] |  |  |
| Contribution to use of renewable primary energy excluding renewable primary energy used as raw material         | MJ   | 1,07E+04        | 0*   | 0*   | 0*   | 0*   | 0*                      | 1,07E+04 | 0*   |  |  |
| Contribution to use of renewable primary energy resources used as raw material                                  | MJ   | 0*              | 0*   | 0*   | 0*   | 0*   | 0*                      | 0*       | 0*   |  |  |
| Contribution to total use of renewable primary energy resources                                                 | MJ   | 1,07E+04        | 0*   | 0*   | 0*   | 0*   | 0*                      | 1,07E+04 | 0*   |  |  |
| Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material | MJ   | 4,59E+04        | 0*   | 0*   | 0*   | 0*   | 0*                      | 4,59E+04 | 0*   |  |  |
| Contribution to use of non renewable primary energy resources used as raw material                              | MJ   | 0*              | 0*   | 0*   | 0*   | 0*   | 0*                      | 0*       | 0*   |  |  |
| Contribution to total use of non-renewable primary energy resources                                             | MJ   | 4,59E+04        | 0*   | 0*   | 0*   | 0*   | 0*                      | 4,59E+04 | 0*   |  |  |
| Contribution to use of secondary material                                                                       | kg   | 0*              | 0*   | 0*   | 0*   | 0*   | 0*                      | 0*       | 0*   |  |  |
| Contribution to use of renewable secondary fuels                                                                | MJ   | 0*              | 0*   | 0*   | 0*   | 0*   | 0*                      | 0*       | 0*   |  |  |
| Contribution to use of non renewable secondary fuels                                                            | MJ   | 0*              | 0*   | 0*   | 0*   | 0*   | 0*                      | 0*       | 0*   |  |  |
| Contribution to net use of freshwater                                                                           | m³   | 3,39E+00        | 0*   | 0*   | 0*   | 0*   | 0*                      | 3,39E+00 | 0*   |  |  |
| Contribution to hazardous waste disposed                                                                        | kg   | 5,28E+01        | 0*   | 0*   | 0*   | 0*   | 0*                      | 5,28E+01 | 0*   |  |  |
| Contribution to non hazardous waste disposed                                                                    | kg   | 2,88E+02        | 0*   | 0*   | 0*   | 0*   | 0*                      | 2,88E+02 | 0*   |  |  |
| Contribution to radioactive waste disposed                                                                      | kg   | 6,79E-02        | 0*   | 0*   | 0*   | 0*   | 0*                      | 6,79E-02 | 0*   |  |  |
| Contribution to components for reuse                                                                            | kg   | 0*              | 0*   | 0*   | 0*   | 0*   | 0*                      | 0*       | 0*   |  |  |
| Contribution to materials for recycling                                                                         | kg   | 0*              | 0*   | 0*   | 0*   | 0*   | 0*                      | 0*       | 0*   |  |  |
| Contribution to materials for energy recovery                                                                   | kg   | 0*              | 0*   | 0*   | 0*   | 0*   | 0*                      | 0*       | 0*   |  |  |
| Contribution to exported energy                                                                                 | MJ   | 0*              | 0*   | 0*   | 0*   | 0*   | 0*                      | 0*       | 0*   |  |  |
|                                                                                                                 |      |                 |      |      |      |      |                         |          |      |  |  |

<sup>\*</sup> represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.5-6, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

| Registration number : ENVPE                                                               |           | ENVPEP111245EN_V3                                        | Drafting rules                      | PEP-PCR-ed4-2021 09 06       |  |  |  |  |
|-------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------|-------------------------------------|------------------------------|--|--|--|--|
|                                                                                           |           |                                                          | Supplemented by                     | PSR-0005-ed3.1-EN-2023 12 08 |  |  |  |  |
| Date of issue                                                                             |           | 109-2025                                                 | Information and reference documents | www.pep-ecopassport.org      |  |  |  |  |
|                                                                                           |           |                                                          | Validity period                     | 5 years                      |  |  |  |  |
| Independent verification of the declaration and data, in compliance with ISO 14021 : 2016 |           |                                                          |                                     |                              |  |  |  |  |
| Internal                                                                                  | Χ         | External                                                 |                                     |                              |  |  |  |  |
| The PCR review was                                                                        | conducted | hy a panel of experts chaired by Julie Orgelet (DDemain) | •                                   |                              |  |  |  |  |

The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)

PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022

The components of the present PEP may not be compared with components from any other program.

Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"

Schneider Electric Industries SAS Country Customer Care Center http://www.se.com/contact

Head Office

35, rue Joseph Monier

CS 30323

F- 92500 Rueil Malmaison Cedex

RCS Nanterre 954 503 439

Capital social 928 298 512 €

www.se.com

Published by Schneider Electric

ENVPEP111245EN\_V3 ©2024 - Schneider Electric – All rights reserved

09-2025