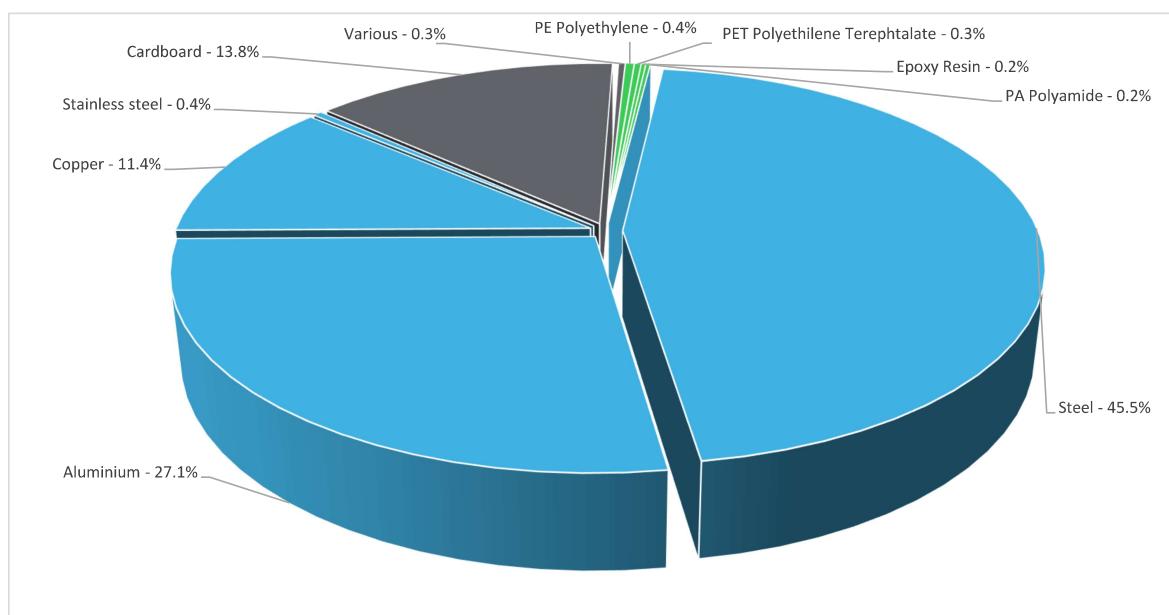


Product Environmental Profile

MH3 SERVOMOTOR 100mm 2stacks key multiturn 16 Brake angular IP65

Lexium MH3 and BMH Servo Motors

Schneider
Electric


General information

Reference product	MH3 SERVOMOTOR 100mm 2stacks key multiturn 16 Brake angular IP65 - MH31002P17F2200
Description of the product	Lexium MH3 servo motors used in machines for motion controls, with medium inertia, designed for high load applications.
Description of the range	The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology. The main purpose of the Lexium Servo Motor (BSH, SH3, BMH, MH3) range is to provide our customer a servo motor product range in combination with the servo drive offer Lexium 32, 52 and 62.
Functional unit	To coordinate and synchronize motion control in industrial environment in active mode 50% of the time with a power consumption of 113W, in stand-by mode 20% of the time with a power consumption of 11W, and in off mode 30% of the time with zero power consumption, over a period of 10 years.
Specifications are:	AC synchronous servo motor Continuous stall torque: 1.4 to 65 Nm Speed: Up to 6000 rpm Shaft: smooth and keyed Encoder: Single - turn and multiturn Resolution: medium and high Brake: with and without

Constituent materials

Reference product mass 6849 g including the product, its packaging, additional elements and accessories

Plastics	1.1%
Metals	84.4%
Others	14.1%

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website
<https://www.se.com>

Additional environmental information

End Of Life	Recyclability potential:	87%	The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).
-------------	--------------------------	-----	---

Environmental impacts

Reference service life time	10 years		
Product category	Other equipments - Active product		
Life cycle of the product	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study.		
Electricity consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligible consumption.		
Installation elements	The product does not require any installation operations.		
Use scenario	The product is in active mode 50% of the time with a power consumption of 113W, in stand-by mode 20% of the time with a power consumption of 11W, and in off mode 30% of the time with zero power consumption, over a period of 10 years.		
Time representativeness	The collected data are representative of the year 2025.		
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are similar and representative of the actual type of technologies used to make the product.		
Geographical representativeness	Final assembly site	Use phase	End-of-life
	Lahr, Germany	Europe	Europe
Energy model used	[A1 - A3]	[A5]	[B6]
	Electricity Mix; Low voltage; 2020; Germany, DE	No energy used	Electricity Mix; Low voltage; 2020; Denmark, DK Electricity Mix; Low voltage; 2020; Italy, IT Electricity Mix; Low voltage; 2020; France, FR Electricity Mix; Low voltage; 2020; Germany, DE

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - <http://www.se.com/contact>

Mandatory Indicators									MH3 SERVOMOTOR 100mm 2stacks key multiturn 16 Brake angular IP65 - MH31002P17F2200	
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads		
Contribution to climate change	kg CO2 eq	1.45E+03	4.27E+01	1.01E+01	2.34E+00	1.39E+03	7.30E+00	-2.36E+01		
Contribution to climate change-fossil	kg CO2 eq	1.37E+03	4.36E+01	1.01E+01	1.11E+00	1.31E+03	7.27E+00	-2.27E+01		
Contribution to climate change-biogenic	kg CO2 eq	7.92E+01	0*	0*	1.22E+00	7.89E+01	2.89E-02	-9.89E-01		
Contribution to climate change-land use and land use change	kg CO2 eq	3.10E-06	3.62E-07	0*	0*	0*	2.74E-06	0.00E+00		
Contribution to ozone depletion	kg CFC-11 eq	3.50E-05	1.81E-05	8.90E-06	1.40E-08	7.63E-06	3.03E-07	-3.46E-06		
Contribution to acidification	mol H+ eq	1.01E+01	4.08E-01	4.16E-02	3.20E-03	9.64E+00	3.95E-02	-2.64E-01		
Contribution to eutrophication, freshwater	kg P eq	4.07E-03	1.23E-04	1.18E-06	2.34E-05	3.90E-03	2.31E-05	-7.76E-05		
Contribution to eutrophication, marine	kg N eq	1.09E+00	5.33E-02	1.89E-02	1.39E-03	1.01E+00	7.26E-03	-1.35E-02		
Contribution to eutrophication, terrestrial	mol N eq	2.27E+01	5.80E-01	2.05E-01	9.96E-03	2.18E+01	8.31E-02	-1.51E-01		
Contribution to photochemical ozone formation - human health	kg COVNM eq	3.32E+00	1.98E-01	6.85E-02	2.29E-03	3.03E+00	2.31E-02	-5.72E-02		
Contribution to resource use, minerals and metals	kg Sb eq	2.10E-03	1.45E-03	0*	0*	6.47E-04	1.12E-06	-1.82E-03		
Contribution to resource use, fossils	MJ	3.55E+04	7.35E+02	1.25E+02	1.03E+01	3.45E+04	1.13E+02	-3.40E+02		
Contribution to water use	m3 eq	1.45E+02	1.44E+01	5.12E-01	9.83E-02	1.29E+02	1.27E+00	-1.06E+01		

Inventory flows Indicators		MH3 SERVOMOTOR 100mm 2stacks key multiturn 16 Brake angular IP65 - MH31002P17F2200						
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to renewable primary energy used as energy	MJ	1.70E+04	2.46E+01	0*	0*	1.69E+04	6.94E+00	-1.71E+01
Contribution to renewable primary energy used as raw material	MJ	5.81E+00	5.81E+00	0*	0*	0*	0*	2.99E+00
Contribution to total renewable primary energy	MJ	1.70E+04	3.04E+01	0*	0*	1.69E+04	6.94E+00	-1.41E+01
Contribution to non renewable primary energy used as energy	MJ	3.55E+04	7.29E+02	1.25E+02	1.03E+01	3.45E+04	1.13E+02	-3.40E+02
Contribution to non renewable primary energy used as raw material	MJ	5.65E+00	5.65E+00	0*	0*	0*	0*	-2.29E-01
Contribution to total non renewable primary energy	MJ	3.55E+04	7.35E+02	1.25E+02	1.03E+01	3.45E+04	1.13E+02	-3.40E+02
Contribution to use of secondary material	kg	3.33E+00	3.33E+00	0*	0*	0*	0*	0.00E+00
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to net use of fresh water	m³	3.42E+00	3.37E-01	1.19E-02	7.12E-03	3.02E+00	3.88E-02	-2.48E-01
Contribution to hazardous waste disposed	kg	1.87E+02	1.14E+02	0*	2.72E-02	7.21E+01	7.07E-02	-1.43E+02
Contribution to non hazardous waste disposed	kg	2.74E+02	4.83E+01	0*	4.88E-01	2.20E+02	5.09E+00	-3.57E+01
Contribution to radioactive waste disposed	kg	8.65E-02	4.03E-02	2.01E-03	6.92E-05	4.39E-02	3.20E-04	-2.79E-02
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to materials for recycling	kg	7.32E+00	8.54E-01	0*	7.88E-01	0*	5.68E+00	0.00E+00
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to exported energy	MJ	1.05E-01	7.56E-03	0*	4.15E-02	0*	5.62E-02	0.00E+00

* represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product	kg of C	0.00E+00
Contribution to biogenic carbon content of the associated packaging	kg of C	2.67E-01

* The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators		MH3 SERVOMOTOR 100mm 2stacks key multiturn 16 Brake angular IP65 - MH31002P17F2200							
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	1.39E+03	0*	0*	0*	0*	0*	1.39E+03	0*
Contribution to climate change-fossil	kg CO2 eq	1.31E+03	0*	0*	0*	0*	0*	1.31E+03	0*
Contribution to climate change-biogenic	kg CO2 eq	7.89E+01	0*	0*	0*	0*	0*	7.89E+01	0*
Contribution to climate change-land use and land use change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	7.63E-06	0*	0*	0*	0*	0*	7.63E-06	0*
Contribution to acidification	mol H+ eq	9.64E+00	0*	0*	0*	0*	0*	9.64E+00	0*
Contribution to eutrophication, freshwater	kg P eq	3.90E-03	0*	0*	0*	0*	0*	3.90E-03	0*
Contribution to eutrophication marine	kg N eq	1.01E+00	0*	0*	0*	0*	0*	1.01E+00	0*
Contribution to eutrophication, terrestrial	mol N eq	2.18E+01	0*	0*	0*	0*	0*	2.18E+01	0*
Contribution to photochemical ozone formation - human health	kg COVNM eq	3.03E+00	0*	0*	0*	0*	0*	3.03E+00	0*
Contribution to resource use, minerals and metals	kg Sb eq	6.47E-04	0*	0*	0*	0*	0*	6.47E-04	0*
Contribution to resource use, fossils	MJ	3.45E+04	0*	0*	0*	0*	0*	3.45E+04	0*
Contribution to water use	m³ eq	1.29E+02	0*	0*	0*	0*	0*	1.29E+02	0*

Inventory flows Indicators		MH3 SERVOMOTOR 100mm 2stacks key multiturn 16 Brake angular IP65 - MH31002P17F2200							
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	1.69E+04	0*	0*	0*	0*	0*	1.69E+04	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	1.69E+04	0*	0*	0*	0*	0*	1.69E+04	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	3.45E+04	0*	0*	0*	0*	0*	3.45E+04	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	3.45E+04	0*	0*	0*	0*	0*	3.45E+04	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	3.02E+00	0*	0*	0*	0*	0*	3.02E+00	0*
Contribution to hazardous waste disposed	kg	7.21E+01	0*	0*	0*	0*	0*	7.21E+01	0*
Contribution to non hazardous waste disposed	kg	2.20E+02	0*	0*	0*	0*	0*	2.20E+02	0*
Contribution to radioactive waste disposed	kg	4.39E-02	0*	0*	0*	0*	0*	4.39E-02	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

* represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.5-6, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP111002_V3	Drafting rules Supplemented by	PEP-PCR-ed4-2021 09 06 PSR-0005-ed3.1-EN-2023 12 08
Date of issue	09-2025	Validity period	5 years
Independent verification of the declaration and data, in compliance with ISO 14021 : 2016			
Internal	X	External	
<p>The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)</p> <p>PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022</p> <p>The components of the present PEP may not be compared with components from any other program.</p> <p>Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"</p>			

Schneider Electric Industries SAS
Country Customer Care Center
<http://www.se.com/contact>
Head Office
35, rue Joseph Monier
CS 30323
F- 92500 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 928 298 512 €