Product Environmental Profile

Altivar Machine ATV320, Variable speed drive, 1.5kW, 380 to 500V, 3 phases, IP65, Vario

Altivar Machine ATV320

General information

Reference product	Altivar Machine ATV320, Variable speed drive, 1.5kW, 380 to 500V, 3 phases, IP65, Vario - ATV320U15N4WS						
Description of the product	The main function of the Altivar Machine product range is the speed control and variation of a synchronous, asynchronous motor for fluid management and industrial applications.						
Description of the range	This PEP refer to a range of products assimilated to a reference product by an extrapolation rule. This range consists of products Altivar Machine ATV320, a variable speed drive designed for Original Equipment Manufacturers (OEMs) that meets simple and advanced application requirements for 3 Phase synchronous and asynchronous motors from 0,37to 1,5 kW (0,5 to 2 HP). The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology.						
Functional unit	To adapt the speed and torque of synchronous, asynchronous motor to the machine's operating point for 1,5 kW for heavy duty electric motors for fluid management and industrial applications in IP65/UL type 1 conditions, at 380V to 500V rated 3-phases voltage supply. Calculation of the environmental impacts is based on 10 years of product service lifetime. The usage profile taken into account is 20% uptime in full phase, 30% uptime in medium phase, 40% uptime in low phase and 10% uptime in "standby" phase (equating it with standstill phase) of the 5000h operating time and 1000h of standby according to the "Electric Motor, VSD and PDS use phase GHG Emissions - CEMEP guideline: Duty profile for general Purpose Machinery_V1".						

Constituent materials

Reference product mass including the product, its packaging, additional elements and accessories 8,6 kg

Plastics 17,8% Metals 45,3% Others 36,9%

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

(19) Additional environmental information

|--|

Recyclability potential:

83%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Reference service life time	10 years										
Product category	Other equipments - Active product										
Life cycle of the product	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study										
Electricity consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly general an egligable consumption										
Installation elements	The product does not require any special installation operations. The packaging waste treatment is taken into account in this phase.										
Use scenario	The product is in full phase 20% of the time with a power use of 44W, in medium phase 30% of the time with a power use 31W, in low phase 40% of the time with a power use 25W, in "standby" phase (equating it with standstill phase) 10% of the time with a power use 27W of the 5000h operating time for 10 years and 1000h of standby according to the "Electric Motor, VSD and PDS use phase GHG Emissions - CEMEP guideline: Duty profile for general Purpose Machinery_V1". Drive efficiency according to IEC/EN 61800-9-2 (supersedes EN 50598-2).										
Time representativeness	The collected data are representative of the year 2025										
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analys EIME in the case) are similar and representative of the actual type of technologies used to make the product.										
Geographical	Final assembly site	Use _l	End-of-life								
representativeness	BATAM, Indonesia	Eur	Europe								
Energy model used	[A1 - A3] Electricity Mix; Low voltage; 2020; Indonesia, ID	[A5] No energy used	[B6] Electricity Mix; Low voltage; 2020; Europe, EU-27	[C1 - C4] Global, European and French datasets are used.							

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators	Altivar Machine ATV320, Variable speed drive, 1.5kW, 380 to 500V, 3 phases, IP65, Vario - ATV320U15N4WS									
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads		
Contribution to climate change	kg CO2 eq	1,25E+03	2,66E+02	1,59E+00	6,00E+00	9,73E+02	6,53E+00	-2,04E-01		
Contribution to climate change-fossil	kg CO2 eq	1,23E+03	2,68E+02	1,59E+00	2,79E+00	9,52E+02	6,49E+00	-2,67E+00		
Contribution to climate change-biogenic	kg CO2 eq	2,26E+01	0*	0*	3,20E+00	2,15E+01	3,34E-02	2,47E+00		
Contribution to climate change-land use and land use change	kg CO2 eq	1,58E-03	1,57E-03	2,40E-06	0*	0	3,56E-06	-9,52E-06		
Contribution to ozone depletion	kg CFC-11 eq	2,12E-05	1,68E-05	1,92E-08	3,70E-08	4,17E-06	2,63E-07	-1,61E-07		
Contribution to acidification	mol H+ eq	7,10E+00	1,97E+00	2,50E-03	1,06E-02	5,10E+00	2,20E-02	-3,05E-02		
Contribution to eutrophication, freshwater	kg P eq	3,02E-03	6,23E-04	5,92E-06	3,32E-05	2,33E-03	3,13E-05	-3,56E-05		
Contribution to eutrophication marine	kg N eq	8,27E-01	2,24E-01	4,54E-04	3,45E-03	5,96E-01	2,90E-03	-3,96E-03		
Contribution to eutrophication, terrestrial	mol N eq	1,23E+01	2,63E+00	4,98E-03	2,63E-02	9,56E+00	3,53E-02	-3,37E-02		
Contribution to photochemical ozone formation - human health	kg COVNM eq	2,66E+00	7,53E-01	1,61E-03	6,22E-03	1,89E+00	9,85E-03	-9,95E-03		
Contribution to resource use, minerals and metals	kg Sb eq	1,41E-02	1,38E-02	0*	0*	3,16E-04	0*	-2,63E-04		
Contribution to resource use, fossils	MJ	2,80E+04	4,54E+03	2,81E+01	2,87E+01	2,33E+04	9,19E+01	-3,61E+01		
Contribution to water use	m3 eq	1,20E+02	4,49E+01	5,71E-02	2,19E-01	7,38E+01	1,08E+00	-1,41E+00		

Inventory flows Indicators	Altivar Machine ATV320, Variable speed drive, 1.5kW, 380 to 500V, 3 phases, IP65, Vario - ATV320U15N4WS										
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads			
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	5,66E+03	1,88E+02	0*	2,48E+00	5,47E+03	8,03E+00	7,13E+00			
Contribution to use of renewable primary energy resources used as raw material	MJ	1,41E+01	1,41E+01	0	0	0	0	-3,20E+01			
Contribution to total use of renewable primary energy resources	MJ	5,68E+03	2,02E+02	0*	2,48E+00	5,47E+03	8,03E+00	-2,48E+01			
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	2,80E+04	4,46E+03	2,81E+01	2,87E+01	2,33E+04	9,19E+01	-3,58E+01			
Contribution to use of non renewable primary energy resources used as raw material	MJ	8,29E+01	8,29E+01	0	0	0	0	-2,18E-01			
Contribution to total use of non-renewable primary energy resources	MJ	2,80E+04	4,54E+03	2,81E+01	2,87E+01	2,33E+04	9,19E+01	-3,61E+01			
Contribution to use of secondary material	kg	2,17E+00	2,17E+00	0	0	0	0	0			
Contribution to use of renewable secondary fuels	MJ	0	0	0	0	0	0	0			
Contribution to use of non renewable secondary fuels	MJ	0	0	0	0	0	0	0			
Contribution to net use of freshwater	m³	2,82E+00	1,05E+00	1,33E-03	1,65E-02	1,72E+00	3,16E-02	-3,29E-02			
Contribution to hazardous waste disposed	kg	1,76E+02	1,48E+02	0*	1,45E-01	2,69E+01	8,63E-01	-2,05E+01			
Contribution to non hazardous waste disposed	kg	3,13E+02	1,63E+02	1,47E-01	7,67E-01	1,47E+02	1,79E+00	-1,63E+00			
Contribution to radioactive waste disposed	kg	1,28E-01	9,26E-02	1,17E-04	1,60E-04	3,46E-02	3,03E-04	-7,52E-04			
Contribution to components for reuse	kg	0	0	0	0	0	0	0			
Contribution to materials for recycling	kg	7,92E+00	5,84E-01	0,00E+00	1,84E+00	0	5,49E+00	0			
Contribution to materials for energy recovery	kg	0	0	0	0	0	0	0			
Contribution to exported energy	MJ	0	0	0	0	0	0	0			

^{*} represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product kg of C 0,00E+00 Contribution to biogenic carbon content of the associated packaging kg of C 6,36E-01

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators		Altivar Machi	ne ATV320,	Variable spe	eed drive,	1.5kW,	380 to 500\	/, 3 phases	, IP65, Vario - A	TV320U15N4WS
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]	
Contribution to climate change	kg CO2 eq	9,73E+02	0	0	0	0	0	9,73E+02	0	
Contribution to climate change-fossil	kg CO2 eq	9,52E+02	0	0	0	0	0	9,52E+02	0	
Contribution to climate change-biogenic	kg CO2 eq	2,15E+01	0	0	0	0	0	2,15E+01	0	
Contribution to climate change-land use and land use change	kg CO2 eq	0	0	0	0	0	0	0	0	
Contribution to ozone depletion	kg CFC-11 eq	4,17E-06	0	0	0	0	0	4,17E-06	0	
Contribution to acidification	mol H+ eq	5,10E+00	0	0	0	0	0	5,10E+00	0	
Contribution to eutrophication, freshwater	kg P eq	2,33E-03	0	0	0	0	0	2,33E-03	0	
Contribution to eutrophication marine	kg N eq	5,96E-01	0	0	0	0	0	5,96E-01	0	
Contribution to eutrophication, terrestrial	mol N eq	9,56E+00	0	0	0	0	0	9,56E+00	0	
Contribution to photochemical ozone formation - human health	kg COVNM eq	1,89E+00	0	0	0	0	0	1,89E+00	0	
Contribution to resource use, minerals and metals	kg Sb eq	3,16E-04	0	0	0	0	0	3,16E-04	0	
Contribution to resource use, fossils	MJ	2,33E+04	0	0	0	0	0	2,33E+04	0	
Contribution to water use	m3 eq	7,38E+01	0	0	0	0	0	7,38E+01	0	

Inventory flows Indicators		Altivar Machi	ne ATV320,	Variable s	peed drive,	1.5kW,	380 to 500\	/, 3 phases,	IP65, Vario - /	ATV320U15N4WS
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]	
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	5,47E+03	0	0	0	0	0	5,47E+03	0	
Contribution to use of renewable primary energy resources used as raw material	MJ	0	0	0	0	0	0	0	0	
Contribution to total use of renewable primary energy resources	MJ	5,47E+03	0	0	0	0	0	5,47E+03	0	
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	2,33E+04	0	0	0	0	0	2,33E+04	0	
Contribution to use of non renewable primary energy resources used as raw material	MJ	0	0	0	0	0	0	0	0	
Contribution to total use of non-renewable primary energy resources	MJ	2,33E+04	0	0	0	0	0	2,33E+04	0	
Contribution to use of secondary material	kg	0	0	0	0	0	0	0	0	
Contribution to use of renewable secondary fuels	MJ	0	0	0	0	0	0	0	0	
Contribution to use of non renewable secondary fuels	MJ	0	0	0	0	0	0	0	0	
Contribution to net use of freshwater	m³	1,72E+00	0	0	0	0	0	1,72E+00	0	
Contribution to hazardous waste disposed	kg	2,69E+01	0	0	0	0	0	2,69E+01	0	
Contribution to non hazardous waste disposed	kg	1,47E+02	0	0	0	0	0	1,47E+02	0	
Contribution to radioactive waste disposed	kg	3,46E-02	0	0	0	0	0	3,46E-02	0	
Contribution to components for reuse	kg	0	0	0	0	0	0	0	0	
Contribution to materials for recycling	kg	0	0	0	0	0	0	0	0	
Contribution to materials for energy recovery	kg	0	0	0	0	0	0	0	0	
Contribution to exported energy	MJ	0	0	0	0	0	0	0	0	

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.5-6, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

To extrapolate the impact to another product from the range, apply the following extrapolation rules to each indicator per life cycle stage:

MANUFACTURING(i) = Mass of (product+packaging) in grams / Mass of (reference product+reference packaging) in grams

DISTRIBUTION (i) = Mass of (product+packaging) in grams / Mass of (reference product+reference packaging) in grams

INSTALLATION (i) = Mass of (packaging) in grams / Mass of (reference packaging) in grams USE (i) = Electricity consumption in kWh / Electricity consumption of the reference product in kWh

END OF LIFE (i))= Mass of (product) in grams / Mass of (reference product) in grams

TOTAL (i) = Σ Life Cycle Stages (i)

By multiplying these coefficients with the impacts of the reference product, you will obtain the impacts of the concerned extrapolated product.

Please find all the informations regarding the products on https://www.se.com

Electricity consumption for linked products can be provided upon request.

Registration number :	SCHN-02115-V01.01-EN	Drafting rules	PEP-PCR-ed4-2021 09 06							
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08							
Verifier accreditation N°	VH50	Information and reference documents	www.pep-ecopassport.org							
Date of issue	09-2025	Validity period	5 years							
Independent verification of the declaration and data, in compliance with ISO 14025 : 2006										
Internal	External X									

The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)

PEPs are compliant with NF C08-100-1:2022 and EN 50693:2019 or NF E38-500 :2022

The components of the present PEP may not be compared with components from any other program.

"Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations

Schneider Electric Industries SAS

Country Customer Care Center http://www.se.com/contact

Head Office

35, rue Joseph Monier

CS 30323

F- 92500 Rueil Malmaison Cedex

RCS Nanterre 954 503 439

Capital social 928 298 512 €

SCHN-02115-V01.01-EN

www.se.com

Published by Schneider Electric

©2024 - Schneider Electric – All rights reserved

09-2025