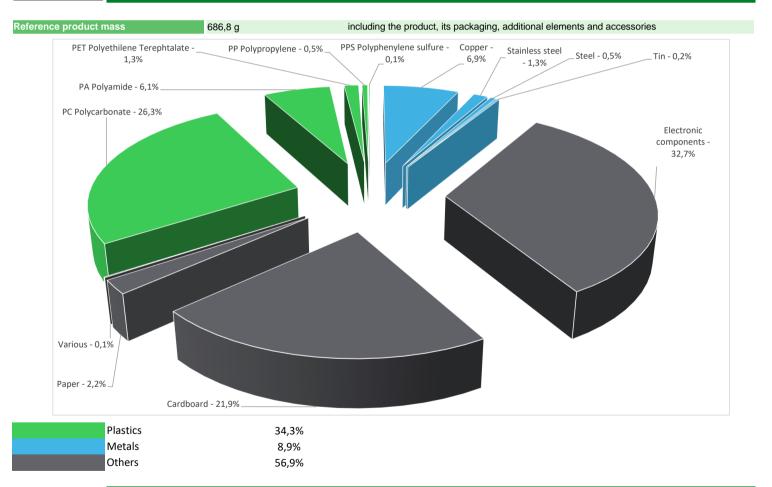
Product Environmental Profile

Modicon ABLS Optimized power supply, Input 100-240V AC 24V 5A 1PH

Modicon Regulated ABLS power supply


ENVPEP2007005_V2 09-2025

General information

Reference product	Modicon ABLS Optimized power supply, Input 100-240V AC 24V 5A 1PH - ABLS1A24050
Description of the product	This Modicon ABLS Optimized (ABLS1A24050) is a single-phase, 100-240V AC power supply delivering 24V DC at 5A and a rated power output of 120W. It installs on omega rail or fixing by screw. It ensures a protection against overloads and short-circuits with automatic restart after the source of overload/short-circuit has been corrected.
Description of the range	The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology. Modicon ABLS optimized power supplies are designed to supply control circuits in industrial applications from 75 W up to 480 W. They are available in 2 casings (compact height 75 mm or book height 124mm) for a better adaptation to the enclosure.
Functional unit	To supply control circuits in industrial atmosphere up to 480W at 100% for 10 years.
Specifications are:	Rating Power: 120 W Output voltage: 24 V DC Power supply output current: 5 A Inrush current: 30.0 A 115 V; 60.0 A 230 V Power factor: 0.55 at 115 V AC; 0.45 at 230 V AC Efficiency: 85 % 115 V AC; 88 % 230 V AC Output voltage adjustment: 22 to 28 V Power dissipation in W: 25 W

Co

Constituent materials

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website $\frac{\text{https://www.se.com}}{\text{otherwise}}$

ENVPEP2007005_V2 09-2025

(1) Additional environmental information

End Of Life

Recyclability potential:

12%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Tenvironmental impacts

Reference service life time	10 years									
Product category	Other equipments - Active product									
Life cycle of the product	The manufacturing, the distribution, the installation	on, the use and the end of life we	ere taken into consideration in the	nis study.						
Electricity consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligible consumption.									
Installation elements	Modicon ABLS power supply does not require an	y installation operations.								
Use scenario	This dissipated power is 25 W for the ABLS1A24050 product during 100 % uptime over a 10-year service life.									
Time representativeness	The collected data are representative of 2025 year.									
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are similar and representative of the actual type of technologies used to make the product.									
Geographical representativeness	Final assembly site	Use p	End-of-life							
representativeness	Cavite (Philippines)	China ; US	S; Europe	China ; US ; Europe						
	[A1 - A3]	[A5]	[B6]	[C1 - C4]						
Energy model used	Electricity Mix; Low voltage; 2020; China, CN	No energy used	Electricity Mix; Low voltage; 2020; United States, US Electricity Mix; Low voltage; 2020; China, CN Electricity Mix; Low voltage; 2020; Europe, EU-27 Electricity Mix; Low voltage; 2020; Italy, IT France, FR	Global, European and French datasets are used.						

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators		Modicon ABLS Optimized power supply, Input 100-240V AC 24V 5A 1PH - ABLS1A24050							
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads	
Contribution to climate change	kg CO2 eq	1,25E+03	6,54E+00	2,81E-01	0*	1,24E+03	1,32E+00	3,85E-02	
Contribution to climate change-fossil	kg CO2 eq	1,24E+03	6,42E+00	2,81E-01	0*	1,24E+03	1,32E+00	3,70E-02	
Contribution to climate change-biogenic	kg CO2 eq	7,15E+00	1,19E-01	0*	4,81E-03	7,02E+00	1,43E-03	1,48E-03	
Contribution to climate change-land use and land use change	kg CO2 eq	2,56E-04	2,56E-04	0*	0*	0*	2,89E-08	0,00E+00	
Contribution to ozone depletion	kg CFC-11 eq	7,25E-06	6,82E-07	2,25E-07	0*	6,34E-06	5,63E-09	-3,03E-08	
Contribution to acidification	mol H+ eq	7,98E+00	8,81E-02	1,33E-03	0*	7,89E+00	1,41E-03	-7,81E-04	
Contribution to eutrophication, freshwater	kg P eq	1,84E-03	1,72E-04	0*	0*	1,66E-03	5,13E-06	9,60E-06	
Contribution to eutrophication, marine	kg N eq	8,94E-01	7,91E-03	6,16E-04	0*	8,85E-01	5,19E-04	6,12E-05	
Contribution to eutrophication, terrestrial	mol N eq	1,08E+01	8,43E-02	6,69E-03	0*	1,07E+01	5,58E-03	1,55E-04	
Contribution to photochemical ozone formation - human health	kg COVNM eq	2,96E+00	2,71E-02	2,10E-03	0*	2,92E+00	1,38E-03	5,81E-07	
Contribution to resource use, minerals and metals	kg Sb eq	2,07E-03	1,87E-03	0*	0*	1,98E-04	0*	-6,93E-05	
Contribution to resource use, fossils	MJ	2,54E+04	9,99E+01	3,56E+00	0*	2,53E+04	2,98E+00	-1,62E-01	
Contribution to water use	m3 eq	8,72E+01	1,23E+01	1,30E-02	1,48E-02	7,46E+01	3,15E-01	-2,99E-02	

ENVPEP2007005_V2 09-2025

Inventory flows Indicators	Modicon ABLS Optimized power supply, Input 100-240V AC 24V 5A 1PH - ABLS1A24050							
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to renewable primary energy used as energy	MJ	3,27E+03	6,88E+00	0*	0*	3,26E+03	0*	-3,81E-02
Contribution to renewable primary energy used as raw material	MJ	3,39E+00	3,39E+00	0*	0*	0*	0*	-1,03E-02
Contribution to total renewable primary energy	MJ	3,27E+03	1,03E+01	0*	0*	3,26E+03	0*	-4,85E-02
Contribution to non renewable primary energy used as energy	MJ	2,54E+04	9,24E+01	3,56E+00	0*	2,53E+04	2,98E+00	-1,33E+00
Contribution to non renewable primary energy used as raw material	MJ	7,54E+00	7,54E+00	0*	0*	0*	0*	1,17E+00
Contribution to total non renewable primary energy	MJ	2,54E+04	9,99E+01	3,56E+00	0*	2,53E+04	2,98E+00	-1,62E-01
Contribution to use of secondary material	kg	6,13E-02	6,13E-02	0*	0*	0*	0*	0,00E+00
Contribution to use of renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to use of non renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to net use of fresh water	m³	2,04E+00	2,87E-01	3,04E-04	3,45E-04	1,74E+00	1,46E-02	-6,95E-04
Contribution to hazardous waste disposed	kg	4,96E+01	1,55E+01	0*	0*	3,38E+01	2,57E-01	-5,44E+00
Contribution to non hazardous waste disposed	kg	2,15E+02	2,50E+00	0*	1,59E-01	2,12E+02	2,71E-01	-1,72E-01
Contribution to radioactive waste disposed	kg	2,57E-02	1,35E-03	5,14E-05	0*	2,43E-02	1,25E-05	-7,92E-05
Contribution to components for reuse	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to materials for recycling	kg	6,34E-02	5,81E-03	0*	0*	0*	5,76E-02	0,00E+00
Contribution to materials for energy recovery	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to exported energy	MJ	8,72E-03	8,12E-03	0*	0*	0*	6,00E-04	0,00E+00
* represents less than 0.01% of the total life cycle of the referen	nce flow							

Contribution to biogenic carbon content of the product 0,00E+00 kg of C Contribution to biogenic carbon content of the associated 4,56E-02 kg of C packaging

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators		Mod	dicon ABI	LS Optimized	power sup	ply, Inpu	ıt 100-24	DV AC 24V 5A 1	PH - ABLS1A24050
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	1,24E+03	0*	0*	0*	0*	0*	1,24E+03	0*
Contribution to climate change-fossil	kg CO2 eq	1,24E+03	0*	0*	0*	0*	0*	1,24E+03	0*
Contribution to climate change-biogenic	kg CO2 eq	7,02E+00	0*	0*	0*	0*	0*	7,02E+00	0*
Contribution to climate change-land use and land use change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	6,34E-06	0*	0*	0*	0*	0*	6,34E-06	0*
Contribution to acidification	mol H+ eq	7,89E+00	0*	0*	0*	0*	0*	7,89E+00	0*
Contribution to eutrophication, freshwater	kg P eq	1,66E-03	0*	0*	0*	0*	0*	1,66E-03	0*
Contribution to eutrophication marine	kg N eq	8,85E-01	0*	0*	0*	0*	0*	8,85E-01	0*
Contribution to eutrophication, terrestrial	mol N eq	1,07E+01	0*	0*	0*	0*	0*	1,07E+01	0*
Contribution to photochemical ozone formation - human health	kg COVNM eq	2,92E+00	0*	0*	0*	0*	0*	2,92E+00	0*
Contribution to resource use, minerals and metals	kg Sb eq	1,98E-04	0*	0*	0*	0*	0*	1,98E-04	0*
Contribution to resource use, fossils	MJ	2,53E+04	0*	0*	0*	0*	0*	2,53E+04	0*
Contribution to water use	m3 eq	7,46E+01	0*	0*	0*	0*	0*	7,46E+01	0*

ENVPEP2007005_V2 09-2025

Inventory flows Indicators		Mod	icon AB	LS Optimized p	ower sup	ply, Inpu	it 100-24	DV AC 24V 5A 1	PH - ABLS1A24050
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	3,26E+03	0*	0*	0*	0*	0*	3,26E+03	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	3,26E+03	0*	0*	0*	0*	0*	3,26E+03	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	2,53E+04	0*	0*	0*	0*	0*	2,53E+04	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	2,53E+04	0*	0*	0*	0*	0*	2,53E+04	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	1,74E+00	0*	0*	0*	0*	0*	1,74E+00	0*
Contribution to hazardous waste disposed	kg	3,38E+01	0*	0*	0*	0*	0*	3,38E+01	0*
Contribution to non hazardous waste disposed	kg	2,12E+02	0*	0*	0*	0*	0*	2,12E+02	0*
Contribution to radioactive waste disposed	kg	2,43E-02	0*	0*	0*	0*	0*	2,43E-02	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.5-6, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2007005_V2	Drafting rules	PEP-PCR-ed4-2021 09 06
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08
Date of issue	118/09/2025	Information and reference documents	www.pep-ecopassport.org
		Validity period	5 years
Independent verification of the de-	eclaration and data, in compliance with ISO 14021 : 2016		
Internal X	External		

The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)

PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022

The components of the present PEP may not be compared with components from any other program.

Document complies with ISO 14021:2016 "Environmental labels and declarations." Type II environmental declarations"

Schneider Electric Industries SAS

Country Customer Care Center http://www.se.com/contact

Head Office

35, rue Joseph Monier CS 30323 F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 928 298 512 €

<u>www.se.com</u> Published by Schneider Electric