Product Environmental Profile

Crimp lugs for copper cable, ComPacT NSX400/630, 240mm², set of 4 parts

General information

Reference product	Crimp lugs for copper cable, ComPacT NSX400/630, 240mm², set of 4 parts - LV432501
Description of the product	These accessories are crimp lugs for Compact NSX 400/630, EasyPact CVS 400/630 or FuPact INFB 200/860. These crimp lugs may be used for copper cable of 240mm². These crimp lugs are supplied with flexible interphase barriers for insulation reinforcement. They are sold by set of 4 parts.
Description of the range	Single product
Functional unit	Other switchgear and controlgear solutions mentioned in the scope (e.g. fuses TC32, all-or-nothing relays TC94, Measuring relays and protection equipment TC95), apply the general rules of PCR and mention in the accompanying report the functional unit, the reference product characteristics, the reference lifetime and the use scenario which are applied consistently with the relevant IEC technical standards.
Specifications are:	Crimp copper cable of 240mm² and ensure the contact to the circuit breaker during a period of 20 years.

<u>&</u>

Constituent materials

Copper - 81.3%

Copper - 81.3%

PE Polyethylene - 1.1%

Cardboard - 2.9%

 Metals
 81.30%

 Others
 17.60%

 Plastics
 1.10%

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

Additional environmental information

End Of Life

Recyclability potential:

83%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Environmental impacts

Reference service life time	20 years									
Product category	Other equipments - Passive product - non-continuous operation									
Life cycle of the product	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study									
Electricity consumtion	The electricity consumed during manufacturing progenerates a negligable consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption								
Installation elements	The product does not require special installation p are accounted for during the installation phase (in		no energy to install. The dispo	sal of the packaging materials						
Use scenario	PSR5 Circuit breaker use case scenario : Use time rate = 30% Load rate = 50% Dissipation per pole = 1.15W									
Time representativeness	The collected data are representative of the year 2024									
Technological representativeness	The Modules of Technologies such as material pro (LCA EIME in the case) are Similar and Represen									
Final assembly site	Europe									
Geographical representativeness	Rest of the World									
Energy model used	[A1 - A3] Electricity Mix; Low voltage; 2020; France, FR	[A5] Electricity Mix; Low voltage; 2020; Europe, EU-27	[B6] Electricity Mix; Low voltage; 2020; Europe, EU-27	[C1 - C4] Electricity Mix; Low voltage; 2020; Europe, EU-27						

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators		Cri	mp lugs for copp	er cable, ComP	acT NSX400/63	0, 240mm², set of	4 parts - LV4325	501
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	1.92E+01	2.03E+00	1.06E-01	1.96E-02	1.60E+01	1.02E+00	-9.57E-01
Contribution to climate change-fossil	kg CO2 eq	1.90E+01	1.98E+00	1.06E-01	1.96E-02	1.59E+01	9.29E-01	-8.52E-01
Contribution to climate change-biogenic	kg CO2 eq	1.68E-01	5.24E-02	0*	0*	2.94E-02	8.65E-02	-1.05E-01
Contribution to climate change-land use and land use chan	ge kg CO2 eq	1.49E-06	5.39E-08	0*	0*	0*	1.44E-06	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	5.08E-07	3.85E-07	1.63E-10	0*	7.74E-08	4.48E-08	-2.73E-07
Contribution to acidification	mol H+ eq	1.80E-01	8.67E-02	6.74E-04	0*	8.19E-02	1.04E-02	-6.87E-02
Contribution to eutrophication, freshwater	kg (PO4)³- eq	2.85E-03	1.08E-04	0*	0*	4.21E-05	2.71E-03	-9.39E-07
Contribution to eutrophication marine	kg N eq	1.40E-02	2.52E-03	3.16E-04	4.50E-06	9.97E-03	1.17E-03	-9.91E-04
Contribution to eutrophication, terrestrial	mol N eq	2.08E-01	2.85E-02	3.47E-03	5.16E-05	1.60E-01	1.60E-02	-1.18E-02
Contribution to photochemical ozone formation - human health	kg COVNM eq	4.92E-02	1.32E-02	8.75E-04	1.13E-05	3.14E-02	3.72E-03	-7.65E-03
Contribution to resource use, minerals and metals	kg Sb eq	7.61E-04	6.68E-04	0*	0*	5.65E-06	8.78E-05	-5.66E-04
Contribution to resource use, fossils	MJ	4.54E+02	3.80E+01	1.49E+00	0*	4.03E+02	1.07E+01	-1.54E+01
Contribution to water use	m3 eq	7.57E+00	4.03E+00	0*	3.08E-03	1.22E+00	2.32E+00	-3.36E+00

Inventory flows Indicators		Cri	mp lugs for copp	er cable, ComP	acT NSX400/63	0, 240mm², set o	f 4 parts - LV432	501
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	1.12E+02	3.11E+00	0*	0*	1.07E+02	2.11E+00	-1.84E+00
Contribution to use of renewable primary energy resources used as raw material	MJ	0.00E+00	0*	0*	0*	0*	0*	2.79E-01
Contribution to total use of renewable primary energy resources	MJ	1.12E+02	3.11E+00	0*	0*	1.07E+02	2.11E+00	-1.56E+00
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	4.49E+02	3.35E+01	1.49E+00	0*	4.03E+02	1.07E+01	-1.54E+01
Contribution to use of non renewable primary energy resources used as raw material	MJ	4.45E+00	4.45E+00	0*	0*	0*	0*	0.00E+00
Contribution to total use of non-renewable primary energy resources	MJ	4.54E+02	3.80E+01	1.49E+00	0*	4.03E+02	1.07E+01	-1.54E+01
Contribution to use of secondary material	kg	1.75E-02	1.75E-02	0*	0*	0*	0*	0.00E+00
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to net use of freshwater	m³	1.77E-01	9.38E-02	0*	7.16E-05	2.88E-02	5.39E-02	-7.82E-02
Contribution to hazardous waste disposed	kg	6.17E+01	6.10E+01	0*	0*	7.00E-01	0*	-5.20E+01
Contribution to non hazardous waste disposed	kg	4.06E+00	1.24E+00	3.74E-03	2.18E-02	2.70E+00	9.83E-02	-5.98E-02
Contribution to radioactive waste disposed	kg	1.61E-03	9.81E-04	2.66E-06	2.19E-07	6.19E-04	5.63E-06	-7.01E-05
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to materials for recycling	kg	4.39E-01	1.59E-02	0*	0*	0*	4.23E-01	0.00E+00
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to exported energy	MJ	4.35E-03	1.66E-04	0*	0*	0*	4.19E-03	0.00E+00

 $^{^{\}star}$ represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product \$kg\$ of C 0.00E+00 \$C\$ ontribution to biogenic carbon content of the associated packaging kg of C 4.33E-03

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators		Crir	np lugs	for copper cal	ole, ComP	acT NS)	(400/630,	240mm², set c	of 4 parts - LV432501
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	1.60E+01	0*	0*	0*	0*	0*	1.60E+01	0*
Contribution to climate change-fossil	kg CO2 eq	1.59E+01	0*	0*	0*	0*	0*	1.59E+01	0*
Contribution to climate change-biogenic	kg CO2 eq	2.94E-02	0*	0*	0*	0*	0*	2.94E-02	0*
Contribution to climate change-land use and land use change	je kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	7.74E-08	0*	0*	0*	0*	0*	7.74E-08	0*
Contribution to acidification	mol H+ eq	8.19E-02	0*	0*	0*	0*	0*	8.19E-02	0*
Contribution to eutrophication, freshwater	kg (PO4)³¯ eq	4.21E-05	0*	0*	0*	0*	0*	4.21E-05	0*
Contribution to eutrophication marine	kg N eq	9.97E-03	0*	0*	0*	0*	0*	9.97E-03	0*
Contribution to eutrophication, terrestrial	mol N eq	1.60E-01	0*	0*	0*	0*	0*	1.60E-01	0*
Contribution to photochemical ozone formation - human health	kg COVNM eq	3.14E-02	0*	0*	0*	0*	0*	3.14E-02	0*
Contribution to resource use, minerals and metals	kg Sb eq	5.65E-06	0*	0*	0*	0*	0*	5.65E-06	0*
Contribution to resource use, fossils	MJ	4.03E+02	0*	0*	0*	0*	0*	4.03E+02	0*
Contribution to water use	m3 eq	1.22E+00	0*	0*	0*	0*	0*	1.22E+00	0*

Inventory flows Indicators		Crir	np lugs f	or copper cab	le, ComP	acT NS)	(400/630,	240mm², set o	of 4 parts - LV432501
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	1.07E+02	0*	0*	0*	0*	0*	1.07E+02	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	1.07E+02	0*	0*	0*	0*	0*	1.07E+02	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	4.03E+02	0*	0*	0*	0*	0*	4.03E+02	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	4.03E+02	0*	0*	0*	0*	0*	4.03E+02	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	2.88E-02	0*	0*	0*	0*	0*	2.88E-02	0*
Contribution to hazardous waste disposed	kg	7.00E-01	0*	0*	0*	0*	0*	7.00E-01	0*
Contribution to non hazardous waste disposed	kg	2.70E+00	0*	0*	0*	0*	0*	2.70E+00	0*
Contribution to radioactive waste disposed	kg	6.19E-04	0*	0*	0*	0*	0*	6.19E-04	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.3, database version 2024-07 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology 0/0 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number:	SCHN-01318-V01.01-EN	Drafting rules	PCR-4-ed4-EN-2021 09 06						
	·	Supplemented by	PSR-0005-ed3.1-EN-2023 12 08						
Verifier accreditation N°	VH45	Information and reference documents	www.pep-ecopassport.org						
Date of issue	11-2024	Validity period	5 years						
Independent verification of the declaration and data, in compliance with ISO 14025 : 2006									
Internal External X									
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022 The components of the present PEP may not be compared with components from any other program.									
Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations"									

Schneider Electric Industries SAS
Country Customer Care Center
http://www.se.com/contact
35, rue Joseph Monier
CS 30323
F- 92500 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 928 298 512 €
www.se.com

SCHN-01318-V01.01-EN

Published by Schneider Electric

©2024 - Schneider Electric – All rights reserved

11-2024