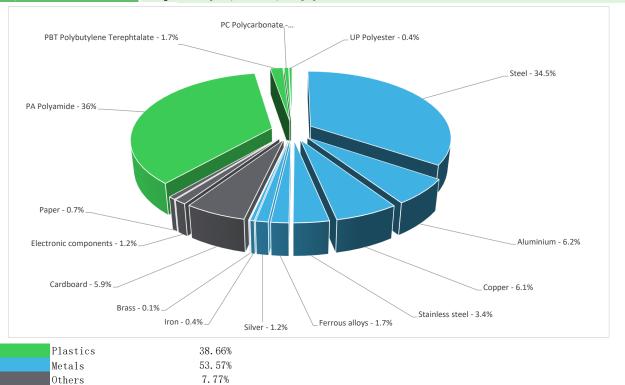
Product Environmental Profile

TeSys Ultra Non reversing power base + Control unit



General information

Reference product	eSys Ultra Non reversing power base + Control unit - LUB12 + LUCA12FU								
Description of the product	The product is for advance motor management system and protection								
Description of the range	Single product								
Functional unit	Establish and cut off the supply of a downstream installation from an electrical and/or mechanical control characterised by the composition of the poles or type of contacts X, a rated voltage of Ue, a rated current le, a control circuit voltage Uc, with Np poles, and if applicable the specific specifications, in the Household/Commercial or Industrial application areas, according to the appropriate use scenario, and during the reference service life of the product of 20 years								
Specifications are:	LUB12: X = 1 NO + 1 NC Ue = 690 V AC Ie = 9 (A) Np = 3P Uc = 24 V LUCA12FU Ue = 690 V AC Uc = 110240 V AC								

Constituent materials

Reference product mass 1012 g including the product, its packaging and additional elements and accessories

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website https://www.se.com/ww/en/work/support/green-premium/

(19) Additional environmental information

End Of Life

Recyclability potential:

57%

The recyclability rate was calculated from the recycling rates of each material making up the product with the exception of data using the ESR database. For materials or components using the ESR database or the absence of data the conservative hypothesis "0% recyclability" was used.

Tenvironmental impacts

Reference service life time	20 years											
Product category	Contactors - Industrial											
Installation elements	The product does not require any installation operations.											
Use scenario	Load rate = 50 % le Use rate = 50 % RLT											
Time representativeness	The collected data are representative of the year 2023											
Technological representativeness		The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product.										
Geographical representativeness	France											
	[A1 - A3]	[A1 - A3] [A5] [B6] [C1 - C4]										
Energy model used	Electricity Mix; Low voltage; 2018; France, FR	Electricity Mix; Low voltage; 2018; France, FR	Electricity Mix; Low voltage; 2018; France, FR	Electricity Mix; Low voltage; 2018; France, FR								

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.schneiderelectric.com/contact

Mandatory Indicators			TeSys Ultra Non reversing power base + Control unit - LUB12 + LUCA12FU						
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturin g	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads	
Contribution to climate change	kg CO2 eq	4.11E+01	9.45E+00	5.41E-01	7.68E-02	2.86E+01	2.47E+00	-2.68E+00	
Contribution to climate change-fossil	kg CO2 eq	4.09E+01	9.33E+00	5.41E-01	7.29E-02	2.85E+01	2.46E+00	-2.63E+00	
Contribution to climate change-biogenic	kg CO2 eq	2.03E-01	1.13E-01	0*	3.82E-03	7.36E-02	1.28E-02	-5.10E-02	
Contribution to climate change-land use and land use change	kg CO2 eq	1.01E-05	9.82E-06	0*	0*	0*	2.40E-07	0.00E+00	
Contribution to ozone depletion	kg CFC-11 eq	1.79E-06	1.35E-06	8.23E-10	1.03E-09	4.20E-07	1.05E-08	-4.07E-07	
Contribution to acidification	mol H+ eq	2.42E-01	6.64E-02	3.49E-03	2.32E-04	1.65E-01	6.88E-03	-2.57E-02	
Contribution to eutrophication, freshwater	kg (PO4) ³⁻ eq	1.98E-03	2.17E-04	2.01E-07	1.42E-06	1.36E-03	4.06E-04	-7.24E-06	
Contribution to eutrophication marine	kg N eq	3.32E-02	7.25E-03	1.63E-03	9.98E-05	2.28E-02	1.47E-03	-1.65E-03	
Contribution to eutrophication, terrestrial	mol N eq	4.39E-01	7.70E-02	1.80E-02	6.97E-04	3.27E-01	1.68E-02	-1.85E-02	
Contribution to photochemical ozone formation - human health	kg COVNM eq	1.04E-01	2.68E-02	4.62E-03	1.59E-04	6.74E-02	5.04E-03	-6.84E-03	
Contribution to resource use, minerals and metals	kg Sb eq	1.38E-02	1.38E-02	0*	0*	1.35E-05	1.29E-05	-5.57E-04	
Contribution to resource use, fossils	MJ	5.78E+03	1.91E+02	7.49E+00	7.92E-01	5.48E+03	9.22E+01	-4.98E+01	
Contribution to water use	m3 eq	3.74E+00	7.29E-01	2.04E-03	5.87E-03	2.07E+00	9.29E-01	-1.32E+00	

Inventory flows Indicators TeSys Ultra Non reversing power base + Control unit - LUB12 + LUCA								
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturin g	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	5.12E+02	4.63E+00	0*	1.05E-01	5.07E+02	3.20E-01	-8.37E-01
Contribution to use of renewable primary energy resources used as raw material	MJ	1.39E+00	1.39E+00	0*	0*	0*	0*	-1.11E+00
Contribution to total use of renewable primary energy resources	MJ	5.14E+02	6.03E+00	0*	1.05E-01	5.07E+02	3.20E-01	-1.95E+00
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	5.76E+03	1.78E+02	7.49E+00	7.92E-01	5.48E+03	9.22E+01	-4.98E+01
Contribution to use of non renewable primary energy resources used as raw material	MJ	1.36E+01	1.36E+01	0*	0*	0*	0*	0.00E+00
Contribution to total use of non-renewable primary energy resources	MJ	5.78E+03	1.91E+02	7.49E+00	7.92E-01	5.48E+03	9.22E+01	-4.98E+01
Contribution to use of secondary material	kg	7.27E-06	7.27E-06	0*	0*	0*	0*	0.00E+00
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to net use of freshwater	m³	9.00E-02	1.71E-02	4.75E-05	1.37E-04	4.82E-02	2.46E-02	-3.08E-02
Contribution to hazardous waste disposed	kg	8.21E+01	8.16E+01	0*	0*	4.25E-01	3.07E-02	-4.50E+01
Contribution to non hazardous waste disposed	kg	9.45E+00	6.23E+00	1.88E-02	2.67E-02	2.75E+00	4.28E-01	-2.76E+00
Contribution to radioactive waste disposed	kg	8.35E-03	7.16E-03	1.34E-05	4.14E-06	1.15E-03	2.00E-05	-1.76E-03
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to materials for recycling	kg	6.27E-01	8.12E-02	0*	0*	0*	5.46E-01	0.00E+00
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to exported energy	MJ	8.42E-03	1.75E-03	0*	1.32E-03	0*	5.36E-03	0.00E+00
* represents less than 0.01% of the total life cycle of the refe	erence flow							

Contribution to biogenic carbon content of the product kg of C 0.00E+00

Contribution to biogenic carbon content of the associated packaging kg of C 1.97E-02

Mandatory Indicators	TeSys l	Jitra Non rev	ersing pov	wer bas	e + Conti	ol unit - LUB1	2 + LUCA1		
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	2.86E+01	0*	0*	0*	0*	0*	2.86E+01	0*
Contribution to climate change-fossil	kg CO2 eq	2.85E+01	0*	0*	0*	0*	0*	2.85E+01	0*
Contribution to climate change-biogenic	kg CO2 eq	7.36E-02	0*	0*	0*	0*	0*	7.36E-02	0*
ontribution to climate change-land use and land use hange	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
ontribution to ozone depletion	kg CFC-11 eq	4.20E-07	0*	0*	0*	0*	0*	4.20E-07	0*
ontribution to acidification	mol H+ eq	1.65E-01	0*	0*	0*	0*	0*	1.65E-01	0*
ntribution to eutrophication, freshwater	kg (PO4) ³⁻ eq	1.36E-03	0*	0*	0*	0*	0*	1.36E-03	0*
tribution to eutrophication marine	kg N eq	2.28E-02	0*	0*	0*	0*	0*	2.28E-02	0*
tribution to eutrophication, terrestrial	mol N eq	3.27E-01	0*	0*	0*	0*	0*	3.27E-01	0*
tribution to photochemical ozone formation - human th	kg COVNM eq	6.74E-02	0*	0*	0*	0*	0*	6.74E-02	0*
ntribution to resource use, minerals and metals	kg Sb eq	1.35E-05	0*	0*	0*	0*	0*	1.35E-05	0*
tribution to resource use, fossils	MJ	5.48E+03	0*	0*	0*	0*	0*	5.48E+03	0*
tribution to water use	m3 eq	2.07E+00	0*	0*	0*	0*	0*	2.07E+00	0*

Inventory flows Indicators				Ultra Non reve	rsing po	wer base	+ Conti	ol unit - LUB12	2 + LUCA12FL
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	5.07E+02	0*	0*	0*	0*	0*	5.07E+02	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	5.07E+02	0*	0*	0*	0*	0*	5.07E+02	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	5.48E+03	0*	0*	0*	0*	0*	5.48E+03	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	5.48E+03	0*	0*	0*	0*	0*	5.48E+03	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	4.82E-02	0*	0*	0*	0*	0*	4.82E-02	0*
Contribution to hazardous waste disposed	kg	4.25E-01	0*	0*	0*	0*	0*	4.25E-01	0*
Contribution to non hazardous waste disposed	kg	2.75E+00	0*	0*	0*	0*	0*	2.75E+00	0*
Contribution to radioactive waste disposed	kg	1.15E-03	0*	0*	0*	0*	0*	1.15E-03	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

 $^{^{\}star}$ represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.1, database version 2023-02 in compliance with ISO14044, EF 3.0 method is applied, for biogenic carbon storage, assessment methodology 0/0 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an

Registration number:	SCHN-01226-V01.01-EN	Drafting rules	PCR-4-ed4-EN-2021 09 06						
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08						
Verifier accreditation N°	VH45	Information and reference documents	www.pep-ecopassport.org						
Date of issue	06-2024	Validity period	5 years						
Independent verification of the	Independent verification of the declaration and data, in compliance with ISO 14025 : 2006								
Internal	External X								
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (Ddemain)									

PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022

The components of the present PEP may not be compared with components from any other program.

Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations"

Schneider Electric Industries SAS Country Customer Care Center http://www.se.com/contact 35, rue Joseph Monier CS 30323 F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439

www.se.com

Published by Schneider Electric ©2024 - Schneider Electric - All rights reserved

06-2024

SCHN-01226-V01.01-EN

Capital social 928 298 512 €