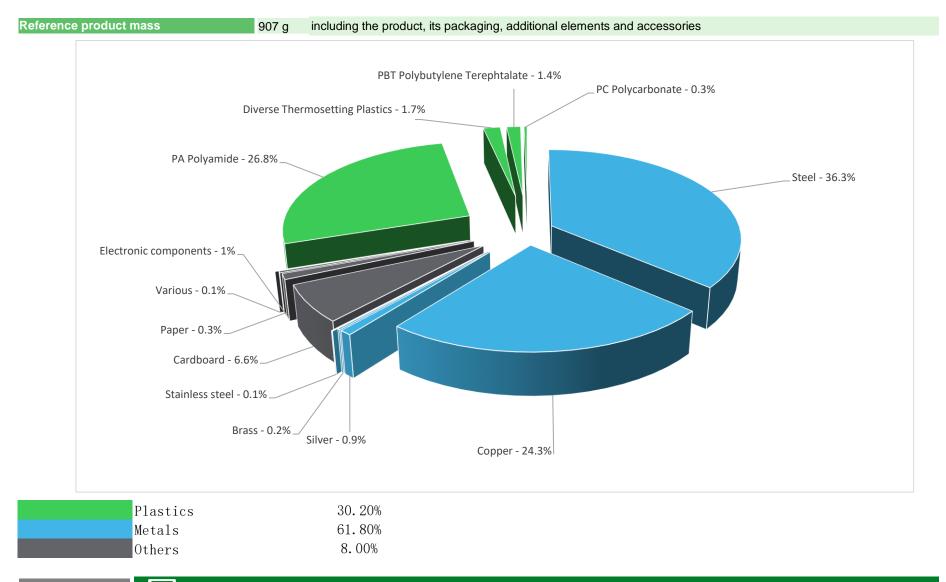
Product Environmental Profile

TeSys Deca Green AC/DC 3pole contactor,65 A

TeSys Deca Green 40A-80A



General information							
Reference product	TeSys Deca Green AC/DC 3pole contactor,65 A - LC1D65AKUE						
Description of the product	The main purpose of the product is to switch on and off electrical power supply of a downstream installation with an electrical and/or mechanical control.						
Description of the range	The products of the range are: rated current:40A-80A,3P/4P,TeSys Deca green contactor ,the representative product used for analysis is 3P 65A (product number: LC1D65AKUE) The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology.						
Functional unit	Establish and cut off the supply of a downstream installation from an electrical and/or mechanical control characterised by the composition of the poles or type of contacts X, a rated voltage of Ue, a rated current le, a control circuit voltage Uc, with Np poles, and if applicable the specific specifications, in the Household/Commercial or Industrial application areas, according to the appropriate use scenario, and during the reference service life of the product of 20 years						
Specifications are:	X = $3NO$ Ue = $690V AC 25400 Hz$ le = $65A$ Np = $3P$ Uc = $100250 V AC 50/60 Hz/DC$ Category of use (AC-1, AC-3, AC-3e)						

ß **Constituent materials**

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

M Additional environmental information

End Of Life

Recyclability potential: 65%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

\mathcal{O} Environmental impacts

Contactors - Industrial					
The manufacturing, the distribution, the installation	on, the use and the end of life v	vere taken into consideration in	this study		
The electricity consumed during manufacturing p generates a negligable consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption				
The product does not require any installation ope	erations				
The collected data are representative of the year 2024					
The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product.					
France					
France					
[A1 - A3] Electricity Mix; Low voltage; 2020; France, FR	[A5] Electricity Mix; Low voltage; 2020; France, FR	[B6] Electricity Mix; Low voltage; 2020; France, FR	[C1 - C4] Electricity Mix; Low voltage; 2020; France, FR		
	The electricity consumed during manufacturing p generates a negligable consumption The product does not require any installation oper Load rate = 50 % le Use rate = 50 % RLT The collected data are representative of the year The Modules of Technologies such as material p (LCA EIME in the case) are Similar and représen France France [A1 - A3]	The manufacturing, the distribution, the installation, the use and the end of life w The electricity consumed during manufacturing processes is considered for each generates a negligable consumption The product does not require any installation operations Load rate = 50 % le Use rate = 50 % RLT The collected data are representative of the year 2024 The Modules of Technologies such as material production, manufacturing proced (LCA EIME in the case) are Similar and représentaive of the actual type of tech France Electricity Mix; Low voltage; 2020; France, FR Electricity Mix; Low voltage;	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in The electricity consumed during manufacturing processes is considered for each part of the product individual generates a negligable consumption The product does not require any installation operations Load rate = 50 % le Use rate = 50 % RLT The collected data are representative of the year 2024 The Modules of Technologies such as material production, manufacturing processes and transport technology (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the processes France France [A1 - A3] [A5] [B6] Electricity Mix; Low voltage; 2020; France, FR Electricity Mix; Low voltage; Electricity Mix; Low voltage;		

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators	TeSys Deca Green AC/DC 3pole contactor,65 A - LC1D65AKUE							
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	4.46E+01	7.20E+00	1.10E-01	7.10E-02	3.50E+01	2.21E+00	-1.78E+00
Contribution to climate change-fossil	kg CO2 eq	4.44E+01	7.19E+00	1.10E-01	6.75E-02	3.49E+01	2.16E+00	-1.82E+00
Contribution to climate change-biogenic	kg CO2 eq	2.17E-01	1.17E-02	0*	3.55E-03	1.54E-01	4.74E-02	3.45E-02
Contribution to climate change-land use and land use change	kg CO2 eq	4.80E-06	4.04E-06	0*	0*	0*	7.62E-07	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	1.99E-06	1.39E-06	0*	9.57E-10	5.77E-07	2.45E-08	-3.39E-07
Contribution to acidification	mol H+ eq	2.73E-01	7.55E-02	6.95E-04	2.15E-04	1.87E-01	9.56E-03	-4.45E-02
Contribution to eutrophication, freshwater	kg (PO4)³⁻ eq	3.10E-03	8.74E-05	0*	1.32E-06	1.57E-03	1.44E-03	-3.74E-06
Contribution to eutrophication, marine	kg N eq	3.53E-02	5.63E-03	3.26E-04	9.27E-05	2.76E-02	1.57E-03	-1.40E-03
Contribution to eutrophication, terrestrial	mol N eq	5.23E-01	5.96E-02	3.57E-03	6.47E-04	4.40E-01	1.90E-02	-1.60E-02
Contribution to photochemical ozone formation - human health	kg NMVOC eq	1.07E-01	2.19E-02	9.01E-04	1.47E-04	7.92E-02	5.32E-03	-7.37E-03
Contribution to resource use, minerals and metals	kg Sb eq	8.99E-03	8.90E-03	0*	0*	4.76E-05	4.66E-05	-7.12E-04
Contribution to resource use, fossils	MJ	6.63E+03	1.43E+02	1.53E+00	7.35E-01	6.41E+03	8.01E+01	-3.93E+01
Contribution to water use	m3 eq	1.34E+01	4.50E+00	0*	5.44E-03	7.21E+00	1.66E+00	-2.36E+00

Inventory flows Indicators	TeSys Deca Green AC/DC 3pole contactor,65 A - LC1D65AKUE							
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to renewable primary energy used as energy	MJ	7.14E+02	4.45E+00	0*	9.71E-02	7.09E+02	1.12E+00	-9.41E-01
Contribution to renewable primary energy used as raw material	MJ	1.32E+00	1.32E+00	0*	0*	0*	0*	-1.03E+00
Contribution to total renewable primary energy	MJ	7.16E+02	5.77E+00	0*	9.71E-02	7.09E+02	1.12E+00	-1.97E+00
Contribution to non renewable primary energy used as energy	MJ	6.62E+03	1.35E+02	1.53E+00	7.35E-01	6.41E+03	8.01E+01	-3.93E+01
Contribution to non renewable primary energy used as raw material	MJ	7.88E+00	7.88E+00	0*	0*	0*	0*	0.00E+00
Contribution to total non renewable primary energy	MJ	6.63E+03	1.43E+02	1.53E+00	7.35E-01	6.41E+03	8.01E+01	-3.93E+01
Contribution to use of secondary material	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to net use of fresh water	m³	3.13E-01	1.05E-01	0*	1.27E-04	1.70E-01	3.86E-02	-5.49E-02
Contribution to hazardous waste disposed	kg	1.02E+02	9.81E+01	0*	0*	3.49E+00	0*	-6.01E+01
Contribution to non hazardous waste disposed	kg	1.34E+01	4.70E+00	3.85E-03	2.47E-02	8.39E+00	3.26E-01	-1.14E+00
Contribution to radioactive waste disposed	kg	1.30E-02	1.13E-02	2.74E-06	3.84E-06	1.66E-03	1.50E-05	-5.38E-04
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to materials for recycling	kg	6.03E-01	3.20E-02	0*	0*	0*	5.71E-01	0.00E+00
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to exported energy	MJ	7.20E-03	3.33E-04	0*	1.22E-03	0*	5.65E-03	0.00E+00

 * represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product	kg of C	0.00E+00
Contribution to biogenic carbon content of the associated	kg of C	1.78E-02
packaging	3	

* The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

* represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.2, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology 0/0 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP1607010_V4	Drafting rules	PCR-4-ed4-EN-2021 09 06				
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08				
Date of issue	01-2025	Information and reference documents	www.pep-ecopassport.org				
		Validity period	5 years				
Independent verification of the declaration and data, in compliance with ISO 14021 : 2016							
Internal X External							
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)							
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022							
The components of the present PEP may not be compared with components from any other program.							
Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"							

Schneider Electric Industries SAS Country Customer Care Center http://www.se.com/contact 35, rue Joseph Monier CS 30323 F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 928 298 512 €

WWW.Se.COM ENVPEP1607010_V4 Published by Schneider Electric

©2024 - Schneider Electric – All rights reserved

01-2025