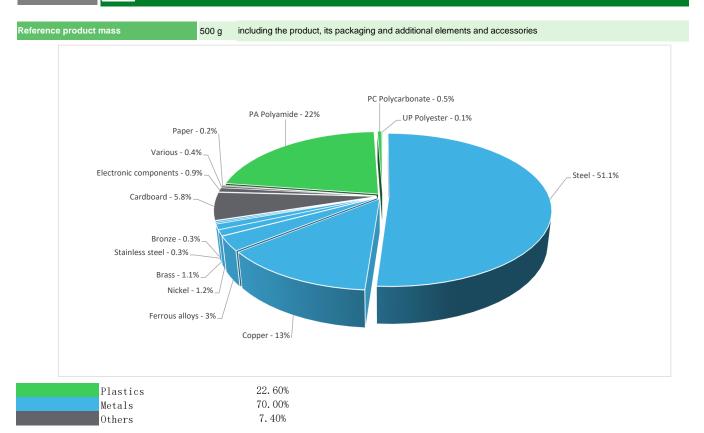
Product Environmental Profile

TeSys Deca railway contactor 3 pole 09A

TeSys Deca



General information

Reference product	TeSys Deca railway contactor 3 pole 09A - LC1D096FDS207
Description of the product	The main purpose of the product is to switch on and off electrical power supply of a downstream installation with an electrical and/or mechanical control.
Description of the range	The products of the range are: The range product report includes:rated current:09A-95A,3P/4P,TeSys Deca Contactor S207,the representative product used for analysis is 3P 09A (product number:LC1D096FDS207) The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology.
Functional unit	Establish and cut off the supply of a downstream installation from an electrical and/or mechanical control characterised by the composition of the poles or type of contacts X, a rated voltage of Ue, a rated current le, a control circuit voltage Uc, with Np poles, and if applicable the specific specifications, in the Household/Commercial or Industrial application areas, according to the appropriate use scenario, and during the reference service life of the product of 20 years
Specifications are:	X = 3NO Ue = 690 (V) Ie = 9(A) Np = 3P Uc = 440 V

&

Constituent materials

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website https://www.se.com/ww/en/work/support/green-premium/

(19) Additional environmental information

End Of Life

Recyclability potential:

73%

The recyclability rate was calculated from the recycling rates of each material making up the product with the exception of data using the ESR database. For materials or components using the ESR database or the absence of data the conservative hypothesis "0% recyclability" was used.

Environmental impacts

Reference service life time	20 years											
Product category	Contactors - Industrial	ontactors - Industrial										
Installation elements	No special components needed											
Use scenario	Load rate = 50 % le Use rate = 50 % RLT											
Time representativeness	The collected data are representative of the year 2024											
Technological representativeness		The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product.										
Geographical representativeness	France											
	[A1 - A3]	[A5]	[B6]	[C1 - C4]								
Energy model used	Electricity Mix; Low voltage; 2018; France, FR	Electricity Mix; Low voltage; 2018; France, FR	Electricity Mix; Low voltage; 2018; France, FR	Electricity Mix; Low voltage; 2018; France, FR								

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.schneiderelectric.com/contact

Mandatory Indicators	TeSys Deca railway contactor 3 pole 09A - LC1D096FDS207							
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	3.77E+01	2.94E+00	9.93E-01	3.28E-02	3.25E+01	1.26E+00	-1.29E+00
Contribution to climate change-fossil	kg CO2 eq	3.75E+01	2.88E+00	9.93E-01	3.12E-02	3.24E+01	1.24E+00	-1.27E+00
Contribution to climate change-biogenic	kg CO2 eq	1.58E-01	5.42E-02	0*	1.64E-03	8.37E-02	1.85E-02	-1.88E-02
Contribution to climate change-land use and land use change	kg CO2 eq	4.35E-06	4.13E-06	0*	0*	0*	2.21E-07	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	1.80E-06	4.41E-07	8.72E-07	4.41E-10	4.78E-07	7.21E-09	-2.28E-07
Contribution to acidification	mol H+ eq	2.25E-01	2.79E-02	4.08E-03	9.93E-05	1.88E-01	4.70E-03	-1.73E-02
Contribution to eutrophication, freshwater	kg (PO4) ³⁻ eq	2.05E-03	9.31E-05	0*	6.07E-07	1.54E-03	4.13E-04	-2.59E-06
Contribution to eutrophication marine	kg N eq	3.09E-02	2.23E-03	1.86E-03	4.27E-05	2.59E-02	8.72E-04	-8.44E-04
Contribution to eutrophication, terrestrial	mol N eq	4.26E-01	2.40E-02	2.01E-02	2.98E-04	3.72E-01	1.01E-02	-9.66E-03
Contribution to photochemical ozone formation - human health	kg COVNM eq	9.53E-02	8.84E-03	6.71E-03	6.79E-05	7.66E-02	3.07E-03	-3.90E-03
Contribution to resource use, minerals and metals	kg Sb eq	5.37E-04	5.09E-04	0*	0*	1.54E-05	1.32E-05	-4.09E-04
Contribution to resource use, fossils	MJ	6.38E+03	6.94E+01	1.23E+01	0*	6.24E+03	6.08E+01	-2.69E+01
Contribution to water use	m3 eq	5.20E+00	2.13E+00	5.01E-02	2.51E-03	2.35E+00	6.68E-01	-9.71E-01

Inventory flows Indicators	TeSys Deca railway contactor 3 pole 09A - LC1D096FDS207									
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads		
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	5.78E+02	1.16E+00	0*	0*	5.77E+02	3.18E-01	-3.44E-01		
Contribution to use of renewable primary energy resources used as raw material	MJ	6.20E-01	6.20E-01	0*	0*	0*	0*	-4.77E-01		
Contribution to total use of renewable primary energy resources	MJ	5.79E+02	1.78E+00	0*	0*	5.77E+02	3.18E-01	-8.21E-01		
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	6.38E+03	6.59E+01	1.23E+01	0*	6.24E+03	6.08E+01	-2.69E+01		
Contribution to use of non renewable primary energy resources used as raw material	MJ	3.45E+00	3.45E+00	0*	0*	0*	0*	0.00E+00		

Inventory flows Indicators			TeSys Deca railway contactor 3 pole 09A - LC1D096FDS207										
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads					
Contribution to total use of non-renewable primary energy resources	MJ	6.38E+03	6.94E+01	1.23E+01	0*	6.24E+03	6.08E+01	-2.69E+01					
Contribution to use of secondary material	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00					
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00					
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00					
Contribution to net use of freshwater	m³	1.21E-01	4.96E-02	1.17E-03	5.85E-05	5.48E-02	1.56E-02	-2.26E-02					
Contribution to hazardous waste disposed	kg	3.97E+01	3.92E+01	0*	0*	4.84E-01	0*	-3.33E+01					
Contribution to non hazardous waste disposed	kg	5.79E+00	2.52E+00	1.01E-03	1.14E-02	3.12E+00	1.38E-01	-8.65E-01					
Contribution to radioactive waste disposed	kg	4.71E-03	3.19E-03	1.96E-04	1.77E-06	1.31E-03	6.67E-06	-3.97E-04					
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00					
Contribution to materials for recycling	kg	3.92E-01	5.11E-02	0*	0*	0*	3.41E-01	0.00E+00					
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00					
Contribution to exported energy	MJ	6.17E-03	2.23E-03	0*	5.64E-04	0*	3.37E-03	0.00E+00					
* represents less than 0.01% of the total life cycle of the refer	ence flow												
Contribution to biogenic carbon content of the product	kg of C	0.00E+00											
Contribution to biogenic carbon content of the associated packaging	kg of C	8.16E-03											

Contribution to climate change	Mandatory Indicators				TeSys Deca r	ailway co	ntactor	3 pole 09	9A - LC1D096F	S207
Contribution to climate change-fossil kg CO2 eq 3.24E+01 0° 0° 0° 0° 0° 3.24E+01 0° 0° 0° 0° 3.24E+01 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°	Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change-biogenic kg CO2 eq 8.37E-02 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*	Contribution to climate change	kg CO2 eq	3.25E+01	0*	0*	0*	0*	0*	3.25E+01	0*
Contribution to climate change-land use and land use change kg CO2 eq 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*	Contribution to climate change-fossil	kg CO2 eq	3.24E+01	0*	0*	0*	0*	0*	3.24E+01	0*
Contribution to ozone depletion	Contribution to climate change-biogenic	kg CO2 eq	8.37E-02	0*	0*	0*	0*	0*	8.37E-02	0*
Contribution to eutrophication, freshwater $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Contribution to climate change-land use and land use change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to eutrophication, freshwater $ \begin{array}{c} kg (\text{PO4})^{3^{*}} \\ \text{eq} \\ \text{Contribution to eutrophication marine} \\ \text{kg N eq} \\ \text{Contribution to eutrophication, terrestrial} \\ \text{mol N eq} \\ \text{3.72E-01} \\ \text{0*} \\ \text{3.72E-01} \\ \text{0*} \\ $	Contribution to ozone depletion	-	4.78E-07	0*	0*	0*	0*	0*	4.78E-07	0*
eq 1.34E-03 0 0 0 0 0 1.54E-03 0 Contribution to eutrophication, reshwater eq 2.59E-02 0* 0* 0* 0* 0* 0* 2.59E-02 0* Contribution to eutrophication, terrestrial mol N eq 3.72E-01 0* 0* 0* 0* 0* 3.72E-01 0* Res COVINI	Contribution to acidification	mol H+ eq	1.88E-01	0*	0*	0*	0*	0*	1.88E-01	0*
Contribution to eutrophication, terrestrial mol N eq 3.72E-01 0* 0* 0* 0* 0* 3.72E-01 0*	Contribution to eutrophication, freshwater		1.54E-03	0*	0*	0*	0*	0*	1.54E-03	0*
ka COVNIM	Contribution to eutrophication marine	kg N eq	2.59E-02	0*	0*	0*	0*	0*	2.59E-02	0*
Contribution to photochemical groups formation - human health kg COVNM 7.66E.02 0* 0* 0* 0* 0* 0* 7.66E.02 0*	Contribution to eutrophication, terrestrial			0*	0*	0*	0*	0*	3.72E-01	0*
eq 7.50E-52 0 0 7.50E-52 0	Contribution to photochemical ozone formation - human health		7.66E-02	0*	0*	0*	0*	0*	7.66E-02	0*
Contribution to resource use, minerals and metals kg Sb eq 1.54E-05 0* 0* 0* 0* 0* 0* 1.54E-05 0*	Contribution to resource use, minerals and metals	kg Sb eq	1.54E-05	0*	0*	0*	0*	0*	1.54E-05	0*
Contribution to resource use, fossils MJ 6.24E+03 0* 0* 0* 0* 0* 0* 6.24E+03 0*	Contribution to resource use, fossils	MJ	6.24E+03	0*	0*	0*	0*	0*	6.24E+03	0*
Contribution to water use m3 eq 2.35E+00 0* 0* 0* 0* 0* 0* 0* 0* 0*	Contribution to water use	m3 eq	2.35E+00	0*	0*	0*	0*	0*	2.35E+00	0*

Inventory flows Indicators		TeSys Deca railway contactor 3 pole 09A - LC1D096FDS207							
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	5.77E+02	0*	0*	0*	0*	0*	5.77E+02	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	5.77E+02	0*	0*	0*	0*	0*	5.77E+02	0*
non renewable primary energy used as raw material	MJ	6.24E+03	0*	0*	0*	0*	0*	6.24E+03	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	6.24E+03	0*	0*	0*	0*	0*	6.24E+03	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	5.48E-02	0*	0*	0*	0*	0*	5.48E-02	0*
Contribution to hazardous waste disposed	kg	4.84E-01	0*	0*	0*	0*	0*	4.84E-01	0*
Contribution to non hazardous waste disposed	kg	3.12E+00	0*	0*	0*	0*	0*	3.12E+00	0*
Contribution to radioactive waste disposed	kg	1.31E-03	0*	0*	0*	0*	0*	1.31E-03	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to non hazardous waste disposed Contribution to radioactive waste disposed Contribution to components for reuse Contribution to materials for recycling Contribution to materials for energy recovery	kg kg kg kg kg kg	3.12E+00 1.31E-03 0* 0* 0*	0* 0* 0* 0* 0*	0* 0* 0*	0* 0* 0* 0* 0*	0* 0* 0* 0* 0*	0* 0* 0* 0* 0*	3.12E+00 1.31E-03 0* 0*	0 0 0

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.1, database version 2023-02 in compliance with ISO14044, EF 3.0 method is applied, for biogenic carbon storage, assessment methodology 0/0 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2205004_V3	P2205004_V3								
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08							
Date of issue	03-2025	Information and reference documents	www.pep-ecopassport.org							
Validity period 5 years										
Independent verification of the ded	claration and data, in compliance with ISO 14021 : 2016									
Internal X	External									
The PCR review was conducted b	y a panel of experts chaired by Julie Orgelet (Ddemain)									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022										
The components of the present PEP may not be compared with components from any other program.										
Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"										

Schneider Electric Industries SAS
Country Customer Care Center
http://www.se.com/contact
35, rue Joseph Monier
CS 30323
F- 92500 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 928 298 512 €

www.se.com

Published by Schneider Electric

ENVPEP2205004_V3 ©2024 - Schneider Electric – All rights reserved

03-2025