Product Environmental Profile Acti9 - Switch Disconnector iSW - 4P - 63 A - 415 V Representative of all Acti9 Switch Disconnector iSW #### General information | Reference product | Acti9 - Switch Disconnector iSW - 4P - 63 A - 415 V - A9S65463 | |----------------------------|--| | Description of the product | This Acti9 iSW product is a modular and reliable switch disconnector. it is a 4P, rated current is 63A, and operating voltage is 415VAC. The degree of protection is IP20 and IP40 in an enclosure. It is DIN rail mountable. The dimensions are (W) 72mm x (H) 85mm x (D) 73mm. This switch disconnector is used for control and isolation. This product complies with EN/IEC 60947-3 standard. | | Description of the range | The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology. The products of the range are: Representative of all Acti9 Switch Disconnector iSW | | Functional unit | Establish, support and interrupt the rated current I = 63A and rated voltage U = 415V, and if applicable the specific specifications, for an enclosure / cabinet installation, in the Household/Commercial application areas, according to the appropriate use scenario, and for the reference service life of the product of 20 years. | | Specifications are: | I = Rated operating current (63A) U = Rated operating voltage (415V) Low Voltage (AC) IP20 & IP40 | ## Constituent materials **Substance assessment** Details of ROHS and REACH substances information are available on the Schneider-Electric website $\frac{\text{https://www.se.com}}{\text{total}}$ ### (19) Additional environmental information End Of Life Recyclability potential: 50% The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability). ### **Environmental impacts** | Reference service life time | 20 years | | | | | | | | | | |----------------------------------|--|--|------|-----------|--|--|--|--|--|--| | Product category | Switches - Enclosure / cabinet - Household / Commercial | | | | | | | | | | | Life cycle of the product | The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study | | | | | | | | | | | Electricity consumtion | The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption | | | | | | | | | | | Installation elements | The product does not require any installation opera | The product does not require any installation operations | | | | | | | | | | Use scenario | Load rate = 20 % of 63A (I) Use rate = 30% of 20 years (RLT) | | | | | | | | | | | Time representativeness | The collected data are representative of the year 2025 | | | | | | | | | | | Technological representativeness | The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product. | | | | | | | | | | | Geographical | Final assembly site Use phase End-of-life | | | | | | | | | | | representativeness | Europe Europe Europe | | | | | | | | | | | | [A1 - A3] | [A5] | [B6] | [C1 - C4] | | | | | | | | Energy model used | Electricity Mix; Low voltage; 2020; Hungary, HU No energy used Electricity Mix; Low voltage; 2020; Europe, EU-27 Global, European and French datasets are used. | | | | | | | | | | Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact | Mandatory Indicators | Acti9 - Switch Disconnector iSW - 4P - 63 A - 415 V - A9S65463 | | | | | | | | |--|--|-----------------------------|------------------------------|------------------------|------------------------|-----------------|----------------------------|-----------------------------| | Impact indicators | Unit | Total (without
Module D) | [A1 - A3] -
Manufacturing | [A4] -
Distribution | [A5] -
Installation | [B1 - B7] - Use | [C1 - C4] - End
of life | [D] - Benefits
and loads | | Contribution to climate change | kg CO2 eq | 7,59E+00 | 2,29E+00 | 3,21E-02 | 2,26E-02 | 4,33E+00 | 9,12E-01 | -5,99E-01 | | Contribution to climate change-fossil | kg CO2 eq | 7,49E+00 | 2,30E+00 | 3,21E-02 | 2,15E-02 | 4,23E+00 | 8,95E-01 | -6,05E-01 | | Contribution to climate change-biogenic | kg CO2 eq | 9,86E-02 | 0* | 0* | 1,07E-03 | 9,57E-02 | 1,72E-02 | 5,77E-03 | | Contribution to climate change-land use and land use change | kg CO2 eq | 1,25E-05 | 1,22E-05 | 0* | 0* | 0* | 2,86E-07 | 0,00E+00 | | Contribution to ozone depletion | kg CFC-11
eq | 7,89E-07 | 7,61E-07 | 0* | 2,93E-10 | 1,86E-08 | 9,45E-09 | -1,16E-07 | | Contribution to acidification | mol H+ eq | 5,11E-02 | 2,48E-02 | 2,15E-04 | 6,61E-05 | 2,27E-02 | 3,36E-03 | -1,63E-02 | | Contribution to eutrophication, freshwater | kg P eq | 6,15E-04 | 6,62E-05 | 0* | 5,17E-07 | 1,04E-05 | 5,38E-04 | -1,33E-06 | | Contribution to eutrophication marine | kg N eq | 5,36E-03 | 2,01E-03 | 1,01E-04 | 2,87E-05 | 2,65E-03 | 5,68E-04 | -4,75E-04 | | Contribution to eutrophication, terrestrial | mol N eq | 7,27E-02 | 2,19E-02 | 1,11E-03 | 2,00E-04 | 4,25E-02 | 6,93E-03 | -5,42E-03 | | Contribution to photochemical ozone formation - human health | kg COVNM
eq | 1,79E-02 | 7,33E-03 | 2,82E-04 | 4,58E-05 | 8,41E-03 | 1,87E-03 | -2,56E-03 | | Contribution to resource use, minerals and metals | kg Sb eq | 8,09E-04 | 7,90E-04 | 0* | 0* | 1,40E-06 | 1,75E-05 | -2,29E-04 | | Contribution to resource use, fossils | MJ | 1,70E+02 | 4,18E+01 | 4,48E-01 | 2,24E-01 | 1,04E+02 | 2,32E+01 | -1,25E+01 | | Contribution to water use | m3 eq | 2,10E+00 | 1,17E+00 | 0* | 1,74E-03 | 3,28E-01 | 6,00E-01 | -8,40E-01 | | Inventory flows Indicators | Acti9 - Switch Disconnector iSW - 4P - 63 A - 415 V - A9S65463 | | | | | | | | |---|--|-----------------------------|------------------------------|------------------------|------------------------|-----------------|----------------------------|-----------------------------| | Inventory flows | Unit | Total (without
Module D) | [A1 - A3] -
Manufacturing | [A4] -
Distribution | [A5] -
Installation | [B1 - B7] - Use | [C1 - C4] - End
of life | [D] - Benefits
and loads | | Contribution to use of renewable primary energy excluding renewable primary energy used as raw material | MJ | 2,58E+01 | 1,07E+00 | 0* | 2,93E-02 | 2,43E+01 | 4,23E-01 | -3,80E-01 | | Contribution to use of renewable primary energy resources used as raw material | MJ | 7,53E-01 | 7,53E-01 | 0* | 0* | 0* | 0* | -3,12E-01 | | Contribution to total use of renewable primary energy resources | MJ | 2,66E+01 | 1,83E+00 | 0* | 2,93E-02 | 2,43E+01 | 4,23E-01 | -6,92E-01 | | Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material | MJ | 1,65E+02 | 3,70E+01 | 4,48E-01 | 2,24E-01 | 1,04E+02 | 2,32E+01 | -1,25E+01 | | Contribution to use of non renewable primary energy resources used as raw material | MJ | 4,81E+00 | 4,81E+00 | 0* | 0* | 0* | 0* | 0,00E+00 | | Contribution to total use of non-renewable primary energy resources | MJ | 1,70E+02 | 4,18E+01 | 4,48E-01 | 2,24E-01 | 1,04E+02 | 2,32E+01 | -1,25E+01 | | Contribution to use of secondary material | kg | 2,27E-04 | 2,27E-04 | 0* | 0* | 0* | 0* | 0,00E+00 | | Contribution to use of renewable secondary fuels | MJ | 0,00E+00 | 0* | 0* | 0* | 0* | 0* | 0,00E+00 | | Contribution to use of non renewable secondary fuels | MJ | 0,00E+00 | 0* | 0* | 0* | 0* | 0* | 0,00E+00 | | Contribution to net use of freshwater | m³ | 4,89E-02 | 2,72E-02 | 0* | 4,06E-05 | 7,67E-03 | 1,40E-02 | -1,96E-02 | | Contribution to hazardous waste disposed | kg | 2,40E+01 | 2,39E+01 | 0* | 0* | 1,20E-01 | 0* | -1,95E+01 | | Contribution to non hazardous waste disposed | kg | 2,15E+00 | 1,29E+00 | 1,13E-03 | 9,66E-03 | 6,53E-01 | 1,98E-01 | -4,12E-01 | | Contribution to radioactive waste disposed | kg | 9,36E-04 | 7,72E-04 | 8,03E-07 | 1,19E-06 | 1,54E-04 | 8,32E-06 | -2,24E-04 | | Contribution to components for reuse | kg | 0,00E+00 | 0* | 0* | 0* | 0* | 0* | 0,00E+00 | | Contribution to materials for recycling | kg | 1,89E-01 | 5,20E-03 | 0* | 0* | 0* | 1,84E-01 | 0,00E+00 | | Contribution to materials for energy recovery | kg | 0,00E+00 | 0* | 0* | 0* | 0* | 0* | 0,00E+00 | | Contribution to exported energy | MJ | 2,80E-03 | 5,82E-05 | 0* | 9,22E-04 | 0* | 1,82E-03 | 0,00E+00 | ^{*} represents less than 0.01% of the total life cycle of the reference flow Contribution to biogenic carbon content of the product kg of C 0,00E+00 Contribution to biogenic carbon content of the associated packaging kg of C 5,94E-03 ^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%) | Mandatory Indicators | | | | Acti9 - Switch | Disconnec | tor iSW | - 4P - 63 | A - 415 V - A9S | 65463 | |--|-----------------|-----------------|------|----------------|-----------|---------|-----------|-----------------|-------| | Impact indicators | Unit | [B1 - B7] - Use | [B1] | [B2] | [B3] | [B4] | [B5] | [B6] | [B7] | | Contribution to climate change | kg CO2 eq | 4,33E+00 | 0* | 0* | 0* | 0* | 0* | 4,33E+00 | 0* | | Contribution to climate change-fossil | kg CO2 eq | 4,23E+00 | 0* | 0* | 0* | 0* | 0* | 4,23E+00 | 0* | | Contribution to climate change-biogenic | kg CO2 eq | 9,57E-02 | 0* | 0* | 0* | 0* | 0* | 9,57E-02 | 0* | | Contribution to climate change-land use and land use change | kg CO2 eq | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | Contribution to ozone depletion | kg CFC-11
eq | 1,86E-08 | 0* | 0* | 0* | 0* | 0* | 1,86E-08 | 0* | | Contribution to acidification | mol H+ eq | 2,27E-02 | 0* | 0* | 0* | 0* | 0* | 2,27E-02 | 0* | | Contribution to eutrophication, freshwater | kg P eq | 1,04E-05 | 0* | 0* | 0* | 0* | 0* | 1,04E-05 | 0* | | Contribution to eutrophication marine | kg N eq | 2,65E-03 | 0* | 0* | 0* | 0* | 0* | 2,65E-03 | 0* | | Contribution to eutrophication, terrestrial | mol N eq | 4,25E-02 | 0* | 0* | 0* | 0* | 0* | 4,25E-02 | 0* | | Contribution to photochemical ozone formation - human health | kg COVNM
eq | 8,41E-03 | 0* | 0* | 0* | 0* | 0* | 8,41E-03 | 0* | | Contribution to resource use, minerals and metals | kg Sb eq | 1,40E-06 | 0* | 0* | 0* | 0* | 0* | 1,40E-06 | 0* | | Contribution to resource use, fossils | MJ | 1,04E+02 | 0* | 0* | 0* | 0* | 0* | 1,04E+02 | 0* | | Contribution to water use | m3 eq | 3,28E-01 | 0* | 0* | 0* | 0* | 0* | 3,28E-01 | 0* | | | | | | | | | | | | | Inventory flows Indicators | | | | Acti9 - Switch E | Disconnec | tor iSW | - 4P - 63 | A - 415 V - A9S | 65463 | |--|------|-----------------|------|------------------|-----------|---------|-----------|-----------------|-------| | Inventory flows | Unit | [B1 - B7] - Use | [B1] | [B2] | [B3] | [B4] | [B5] | [B6] | [B7] | | Contribution to use of renewable primary energy excluding enewable primary energy used as raw material | MJ | 2,43E+01 | 0* | 0* | 0* | 0* | 0* | 2,43E+01 | 0* | | ntribution to use of renewable primary energy resources ed as raw material | MJ | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | ribution to total use of renewable primary energy urces | MJ | 2,43E+01 | 0* | 0* | 0* | 0* | 0* | 2,43E+01 | 0* | | oution to use of non renewable primary energy excluding newable primary energy used as raw material | MJ | 1,04E+02 | 0* | 0* | 0* | 0* | 0* | 1,04E+02 | 0* | | ution to use of non renewable primary energy
ses used as raw material | MJ | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | ution to total use of non-renewable primary energy es | MJ | 1,04E+02 | 0* | 0* | 0* | 0* | 0* | 1,04E+02 | 0* | | tion to use of secondary material | kg | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | ution to use of renewable secondary fuels | MJ | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | ution to use of non renewable secondary fuels | MJ | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | oution to net use of freshwater | m³ | 7,67E-03 | 0* | 0* | 0* | 0* | 0* | 7,67E-03 | 0* | | oution to hazardous waste disposed | kg | 1,20E-01 | 0* | 0* | 0* | 0* | 0* | 1,20E-01 | 0* | | oution to non hazardous waste disposed | kg | 6,53E-01 | 0* | 0* | 0* | 0* | 0* | 6,53E-01 | 0* | | ution to radioactive waste disposed | kg | 1,54E-04 | 0* | 0* | 0* | 0* | 0* | 1,54E-04 | 0* | | ution to components for reuse | kg | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | ution to materials for recycling | kg | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | ution to materials for energy recovery | kg | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | bution to exported energy | MJ | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | | | | | | | | | | | ^{*} represents less than 0.01% of the total life cycle of the reference flow Life cycle assessment performed with EIME version v6.2.2, database version 2024-01 in compliance with ISO14044, EF3,1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation. | Registration number : | SCHN-01376-V01.01-EN | Drafting rules | PCR-4-ed4-EN-2021 09 06 | | | | | | | |---------------------------------|--|-------------------------------------|------------------------------|--|--|--|--|--|--| | | | Supplemented by | PSR-0005-ed3.1-EN-2023 12 08 | | | | | | | | Verifier accreditation N° | VH48 | Information and reference documents | www.pep-ecopassport.org | | | | | | | | Date of issue | 03-2025 | Validity period | 5 years | | | | | | | | Independent verification of the | Independent verification of the declaration and data, in compliance with ISO 14025: 2006 | | | | | | | | | | Internal | External X | | | | | | | | | | The PCR review was conducted | The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain) | | | | | | | | | PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022 The components of the present PEP may not be compared with components from any other program. Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations" Schneider Flectric Industries SAS Country Customer Care Center http://www.se.com/contact Head Office 35, rue Joseph Monier CS 30323 F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 928 298 512 € www.se.com SCHN-01376-V01.01-EN Published by Schneider Electric ©2024 - Schneider Electric - All rights reserved 03-2025