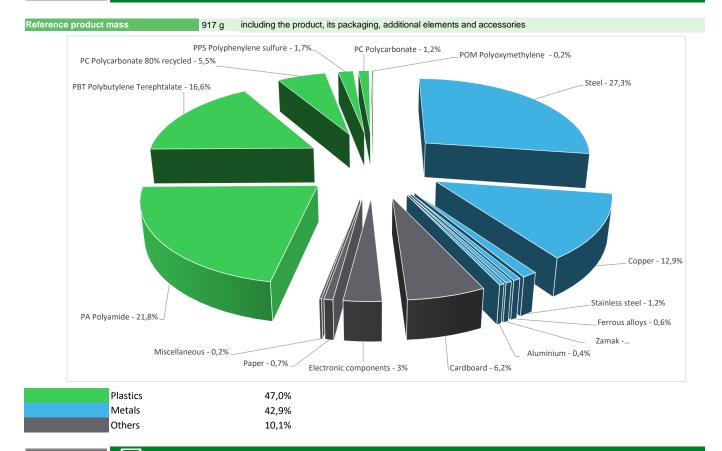
Product Environmental Profile

Acti9 - iQuick PRD40r modular surge arrester - 3P+N - with remote transfer

Representative of all Acti9 iQuick PRD surge arrester with remote transfer



General information								
Reference product	Acti9 - iQuick PRD40r modular surge arrester - 3P+N - with remote transfer - A9L16294							
Description of the product	The Acti9 iQuick PRD40r is a Type 2, 3P+N Surge Protective Devices. It protects against direct and indirect lighting strikes at electrical architecture top level. It is suitable for use in 230/400V - 50/60Hz networks, and with TT and TN-S earthing systems							
Description of the range	The products of the range are: All Acti9 iQuick PRD surge arrester with remote transfer The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology.							
Functional unit	Protect, against direct and indirect effects of lightning or against transient overvoltages, electronic equipment connected to networks with a rated operational voltage of up to 1000 V AC or 1500 V DC, via a surge arrester of type 2, with 4 poles, according to the appropriate use scenario, and for the reference service life of the product of 20 years.							
Specifications are:	T = T2 Np = 4 Uc = $0.275kV$ In = $20kA$ Up = $1.5kV$ Ic = $1\mu A$ per pole F = AC $50/60Hz$ Low voltage (AC)							

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

(Jy Additional environmental information

End Of Life

Recyclability potential:

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

\mathcal{O} Environmental impacts

41%

	00									
Reference service life time	20 years									
Product category	Surge arresters - Type 1, 2 or 3 devices connected	ed to low voltage power systems	5							
Life cycle of the product	The manufacturing, the distribution, the installation	n, the use and the end of life we	ere taken into consideration in th	his study						
Electricity consumtion	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption									
Installation elements	No special components needed									
Use scenario	Load rate = 100% Ic Use rate = 100 % RLT									
Time representativeness	The collected data are representative of the year 2024									
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and Representative of the actual type of technologies used to make the product.									
Final assembly site	Zala, Hungary									
Geographical representativeness	Europe									
Energy model used	[A1 - A3] Electricity Mix; Low voltage; 2020; Hungary, HU	[A5] Electricity Mix; Low voltage; 2020; Europe, EU-27	[B6] Electricity Mix; Low voltage; 2020; Europe, EU-27	[C1 - C4] Electricity Mix; Low voltage; 2020; Europe, EU-27						

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators	Acti9 - iQuick PRD40r modular surge arrester - 3P+N - with remote transfer - A9L16294										
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads			
Contribution to climate change	kg CO2 eq	7,88E+00	5,36E+00	1,78E-01	6,32E-02	5,09E-02	2,23E+00	-1,21E+00			
Contribution to climate change-fossil	kg CO2 eq	7,92E+00	5,41E+00	1,78E-01	6,02E-02	5,09E-02	2,21E+00	-1,25E+00			
Contribution to climate change-biogenic	kg CO2 eq	-3,15E-02	-5,65E-02	0*	0*	0*	0*	4,41E-02			
Contribution to climate change-land use and land use char	ige kg CO2 eq	6,89E-05	6,86E-05	0*	0*	0*	3,63E-07	0,00E+00			
Contribution to ozone depletion	kg CFC-11 eq	5,11E-07	4,97E-07	2,74E-10	8,18E-10	2,47E-10	1,27E-08	-2,19E-07			
Contribution to acidification	mol H+ eq	6,01E-02	5,24E-02	1,13E-03	1,85E-04	2,61E-04	6,06E-03	-2,35E-02			
Contribution to eutrophication, freshwater	kg (PO4)³⁻ eq	8,30E-04	1,42E-04	0*	1,45E-06	1,34E-07	6,86E-04	-2,89E-06			
Contribution to eutrophication marine	kg N eq	6,63E-03	4,75E-03	5,30E-04	8,03E-05	3,18E-05	1,24E-03	-9,17E-04			
Contribution to eutrophication, terrestrial	mol N eq	7,12E-02	4,99E-02	5,81E-03	5,59E-04	5,11E-04	1,44E-02	-1,04E-02			
Contribution to photochemical ozone formation - human health	kg COVNM eq	2,57E-02	2,00E-02	1,47E-03	1,28E-04	1,00E-04	4,00E-03	-4,44E-03			
Contribution to resource use, minerals and metals	kg Sb eq	5,26E-04	5,04E-04	0*	0*	0*	2,20E-05	-4,37E-04			
Contribution to resource use, fossils	MJ	1,89E+02	1,28E+02	2,49E+00	6,26E-01	1,29E+00	5,60E+01	-2,69E+01			
Contribution to water use	m3 eq	3,54E+00	2,59E+00	6,78E-04	4,88E-03	3,90E-03	9,38E-01	-1,27E+00			

Inventory flows Indicators	Acti9 - iQuick PRD40r modular surge arrester - 3P+N - with remote transfer - A9L16294										
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads			
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	2,78E+00	1,81E+00	3,32E-03	8,21E-02	3,40E-01	5,36E-01	-4,49E-01			
Contribution to use of renewable primary energy resources used as raw material	MJ	1,96E+00	1,96E+00	0*	0*	0*	0*	-8,72E-01			
Contribution to total use of renewable primary energy resources	MJ	4,73E+00	3,77E+00	3,32E-03	8,21E-02	3,40E-01	5,36E-01	-1,32E+00			
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	1,77E+02	1,17E+02	2,49E+00	6,26E-01	1,29E+00	5,60E+01	-2,69E+01			
Contribution to use of non renewable primary energy resources used as raw material	MJ	1,18E+01	1,18E+01	0*	0*	0*	0*	0,00E+00			
Contribution to total use of non-renewable primary energy resources	MJ	1,89E+02	1,28E+02	2,49E+00	6,26E-01	1,29E+00	5,60E+01	-2,69E+01			
Contribution to use of secondary material	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00			
Contribution to use of renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00			
Contribution to use of non renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00			
Contribution to net use of freshwater	m³	8,24E-02	6,03E-02	1,58E-05	1,14E-04	9,17E-05	2,18E-02	-2,97E-02			
Contribution to hazardous waste disposed	kg	1,68E+01	1,67E+01	0*	0*	2,23E-03	9,19E-02	-3,63E+01			
Contribution to non hazardous waste disposed	kg	3,45E+00	2,96E+00	6,27E-03	2,71E-02	8,60E-03	4,45E-01	-8,95E-01			
Contribution to radioactive waste disposed	kg	1,40E-03	1,38E-03	4,46E-06	3,34E-06	1,97E-06	1,85E-05	-4,43E-04			
Contribution to components for reuse	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00			
Contribution to materials for recycling	kg	6,03E-01	2,49E-01	0*	6,20E-05	0*	3,54E-01	0,00E+00			
Contribution to materials for energy recovery	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00			
Contribution to exported energy	MJ	6,24E-03	1,71E-04	0*	2,58E-03	0*	3,50E-03	0,00E+00			
* represents less than 0.01% of the total life cycle of the refe	erence flow										

* represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product	kg of C	0,00E+00
Contribution to biogenic carbon content of the associated	kg of C	1,71E-02

 packaging
 kg of C
 1,71E-02

 * The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators		Act	i9 - iQuic	k PRD40r mod	dular surge	e arreste	er - 3P+N	- with remote t	ransfer - A9L16294
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	5,09E-02	0*	0*	0*	0*	0*	5,09E-02	0*
Contribution to climate change-fossil	kg CO2 eq	5,09E-02	0*	0*	0*	0*	0*	5,09E-02	0*
Contribution to climate change-biogenic	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to climate change-land use and land use chan	ge kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	2,47E-10	0*	0*	0*	0*	0*	2,47E-10	0*
Contribution to acidification	mol H+ eq	2,61E-04	0*	0*	0*	0*	0*	2,61E-04	0*
Contribution to eutrophication, freshwater	kg (PO4)³⁻ eq	1,34E-07	0*	0*	0*	0*	0*	1,34E-07	0*
Contribution to eutrophication marine	kg N eq	3,18E-05	0*	0*	0*	0*	0*	3,18E-05	0*
Contribution to eutrophication, terrestrial	mol N eq	5,11E-04	0*	0*	0*	0*	0*	5,11E-04	0*
Contribution to photochemical ozone formation - human health	kg COVNM eq	1,00E-04	0*	0*	0*	0*	0*	1,00E-04	0*
Contribution to resource use, minerals and metals	kg Sb eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to resource use, fossils	MJ	1,29E+00	0*	0*	0*	0*	0*	1,29E+00	0*

Contribution to water use	m3 eq	3,90E-03	0*	0*	0*	0*	0*	3,90E-03	0*

Inventory flows Indicators		Act	i9 - iQuio	ck PRD40r mod	lular surge	e arreste	r - 3P+N	- with remote t	ransfer - A9L16294	
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]	
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	3,40E-01	0*	0*	0*	0*	0*	3,40E-01	0*	
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to total use of renewable primary energy resources	MJ	3,40E-01	0*	0*	0*	0*	0*	3,40E-01	0*	
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	1,29E+00	0*	0*	0*	0*	0*	1,29E+00	0*	
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to total use of non-renewable primary energy resources	MJ	1,29E+00	0*	0*	0*	0*	0*	1,29E+00	0*	
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to net use of freshwater	m ³	9,17E-05	0*	0*	0*	0*	0*	9,17E-05	0*	
Contribution to hazardous waste disposed	kg	2,23E-03	0*	0*	0*	0*	0*	2,23E-03	0*	
Contribution to non hazardous waste disposed	kg	8,60E-03	0*	0*	0*	0*	0*	8,60E-03	0*	
Contribution to radioactive waste disposed	kg	1,97E-06	0*	0*	0*	0*	0*	1,97E-06	0*	
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*	
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*	
		-								

 * represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.2, database version 2024-01 in compliance with ISO14044, EF3,1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	SCHN-00012-V02.01-EN	Drafting rules	PCR-4-ed4-EN-2021 09 06						
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08						
Verifier accreditation N°	VH48	Information and reference documents	www.pep-ecopassport.org						
Date of issue	te of issue 12-2024 Validity perio								
Independent verification of the declaration and data, in compliance with ISO 14025 : 2006									
Internal	Internal External X								
The PCR review was conducted	d by a panel of experts chaired by Julie Orgelet (DL	Demain)							
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022 The components of the present PEP may not be compared with components from any other program.									
Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations"									

Schneider Electric Industries SAS

Country Customer Care Center http://www.se.com/contact

35, rue Joseph Monier CS 30323 F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 928 298 512 €

www.se.com

SCHN-00012-V02.01-EN

Published by Schneider Electric ©2024 - Schneider Electric – All rights reserved

12-2024