
Cloud Connected Sensor Data-as-a-Service
Starter Solutions
Original instructions

EIO0000003797.01
11/2020

www.tesensors.com

Legal Information
The Schneider Electric brand and any trademarks of Schneider Electric SE and its
subsidiaries referred to in this guide are the property of Schneider Electric SE or its
subsidiaries. All other brands may be trademarks of their respective owners.

This guide and its content are protected under applicable copyright laws and
furnished for informational use only. No part of this guide may be reproduced or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), for any purpose, without the prior written permission of
Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the guide
or its content, except for a non-exclusive and personal license to consult it on an "as
is" basis. Schneider Electric products and equipment should be installed, operated,
serviced, and maintained only by qualified personnel.

As standards, specifications, and designs change from time to time, information
contained in this guide may be subject to change without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by
Schneider Electric and its subsidiaries for any errors or omissions in the informational
content of this material or consequences arising out of or resulting from the use of the
information contained herein.

Table of Contents

Safety Information ..5
About the Book...6
Overview of Cloud Connected Sensor Data-as-a-Service7

Cloud Connected Sensor Legacy Offer...7
Cloud Connected Sensor Data-as-a-Service Offer...................................8

Publish / Subscribe Messaging and ETL Processes10
Publish / Subscribe Messaging and ETL Processes Applied to Cloud
Connected Sensor Data-as-a-Service ..10

Data-as-a-Service in Cloud Connected Sensor ...12
How to Enable Data-as-a-Service in Cloud Connected Sensor12

Functionalities linked to Cloud Connected Sensor Data-as-a-
Service...12
Step by Step Guide to Activate Cloud Connected Sensor Data-
as-a-Service ...13

Messages Format of Transmitters ..14
Messages Format ...14
Product Configuration Frame (RecordType = 16 (10h))17
Network Configuration Frame (RecordType = 32 (20h))18
Keep Alive Frame (RecordType = 48 (30h))19
Measurement Frame (RecordType = 64 (40h))...............................20
Geolocation Frame (RecordType = 255 (FFh))21

Radio Data Transmission ..22
Radio Frames Details ..22

Cloud Connected Sensor Data-as-a-Service Starter Solutions24
Conceptual View of the Starter Solutions ..25
Starter Solution for a Simple File ..27

Required NuGet Packages, SDK and Libraries................................27
Pre-Run Setup ..27
Behavior of the Starter Solution ..27

Starter Solution for WonderWare Historian..29
Required NuGet Packages, SDK and Libraries................................29
Pre-Run Setup ..29
Behavior of the Starter Solution ..30

Starter Solution for Modbus over TCP ..31
Required NuGet Packages, SDK, and Libraries31
Pre-Run Setup ..31
Behavior of the Starter Solution ..32

Appendices ..35
Publish / Subscribe Messaging Principle and ETL Processes.......................36

ETL Processes ...37
ETL Processes Overview...37
Extract Process...37
Transform Process ..37
Load Process..38

Publish/Subscribe Messaging ..39
Basic Concept ..39
Note on Cybersecurity ...39

Information Concerning Technologies Used..41

EIO0000003797.01 3

Microsoft Azure Service Bus ..41
Microsoft Visual Studio ..41

Glossary ...43

4 EIO0000003797.01

Safety Information

Safety Information

Important Information
Read these instructions carefully, and look at the equipment to become familiar
with the device before trying to install, operate, service, or maintain it. The
following special messages may appear throughout this documentation or on the
equipment to warn of potential hazards or to call attention to information that
clarifies or simplifies a procedure.

Please Note
Electrical equipment should be installed, operated, serviced, and maintained only
by qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction
and operation of electrical equipment and its installation, and has received safety
training to recognize and avoid the hazards involved.

The addition of this symbol to a “Danger” or “Warning” safety label indicates that an
electrical hazard exists which will result in personal injury if the instructions are not
followed.

This is the safety alert symbol. It is used to alert you to potential personal injury
hazards. Obey all safety messages that follow this symbol to avoid possible injury or
death.

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious
injury.

! DANGER

WARNING indicates a hazardous situation which, if not avoided, could result in death or
serious injury.

WARNING!

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or
moderate injury.

CAUTION!

NOTICE is used to address practices not related to physical injury.

NOTICE

EIO0000003797.01 5

About the Book

About the Book

Document Scope
The purpose of this document is to provide to the Customer information about
what is the Cloud Connected Sensor Data-as-a-Service offer, how it can be
activated, exploited and what are the possibilities offered.

Validity Note
This document has been updated with Data-as-a Service - Starter Solutions V1.1

For product compliance and environmental information (RoHS, REACH, PEP,
EOLI, etc.), go to www.se.com/ww/en/work/support/green-premium/.

The technical characteristics of the devices described in the present document
also appear online. To access the information online, go to the Schneider Electric
home page www.se.com/ww/en/download/.

The characteristics that are described in the present document should be the
same as those characteristics that appear online. In line with our policy of constant
improvement, we may revise content over time to improve clarity and accuracy. If
you see a difference between the document and online information, use the online
information as your reference.

Related Documents
Title of documentation Reference number

XIOT11SE••• Standalone Transmitter -
Instruction Sheet

QGH83382 (ENG)

QGH83382 (ITA)

QGH83382 (SPA)

QGH83382 (FRE)

QGH83382 (DAN)

QGH83382 (GER)

QGH83382 (SWE)

QGH83382 (DUT)

Cloud Connected Sensor Data-as-a-Service -
Starter Solution WonderWare

XIOTDaaSStarterSolution_WonderWare

Cloud Connected Sensor Data-as-a-Service -
Starter Solution Visual Studio

XIOTDaaSStarterSolution_Visual Studio

You can download these technical publications, the present document and other
technical information from our website www.se.com/en/download/.

6 EIO0000003797.01

https://www.se.com/ww/en/work/support/green-premium/
https://www.se.com/ww/en/download/
https://www.se.com/en/download/document/QGH83382_EN
https://www.se.com/en/download/document/QGH83382_IT
https://www.se.com/en/download/document/QGH83382_ES
https://www.se.com/en/download/document/QGH83382_FR
https://www.se.com/en/download/document/QGH83382_DA
https://www.se.com/en/download/document/QGH83382_DE
https://www.se.com/en/download/document/QGH83382_SV
https://www.se.com/en/download/document/QGH83382_NL
https://www.se.com/en/download/document/XIOTDaaSWonderWare
https://www.se.com/en/download/document/XIOTDaaSVisualStudio
https://www.se.com/en/download/

Overview of Cloud Connected Sensor Data-as-a-Service

Overview of Cloud Connected Sensor Data-as-a-
Service

Cloud Connected Sensor Legacy Offer

Overview

Legacy Cloud Connected Sensor overview:

The XIOT11SE••••• standalone transmitter allows to exploit state changes of one
or two dry contacts through a LPWAN (Sigfox) connection. The transmitted
information is made available on the web, through the Cloud Connected Sensor
platform (https://XIOT.Tesensors.com) or from IOS / Android mobile applications
(Cloud Connected Switch App).

NOTE: Cloud Connected Sensor Data-as-a-Service is concurrent and additive
to Cloud Connected Sensor legacy features. Whatever Data-as-a-Service is
activated or not, the data of the transmitter are still available on the Cloud
Connected Switch Web Platform of Mobile App.

EIO0000003797.01 7

https://XIOT.Tesensors.com

Overview of Cloud Connected Sensor Data-as-a-Service

Cloud Connected Sensor Data-as-a-Service Offer

Overview

Cloud Connected Sensor Data-as-a-Service (DaaS) provides integration
capability to store data and monitor Cloud Connected Sensor devices with the
customer systems, such as SCADA systems or specific Customer Application
systems.

NOTE: Cloud Connected Sensor Data-as-a-Service integration solution is
available only for the reference XIOT11SERMRCL.

Cloud Connected Sensor propose a Near-Real-Time, Message Oriented solution
for Data-as-a-Service.

Cloud Connected Sensor with Data-as-a-Service overview:

Cloud Connected Sensor Solution

An integration solution allows to extract data from the Source System and load it
into the Destination System.

In the case of Cloud Connected Sensor Data-as-a-Service:
• the Source System is the Cloud Connected Sensor Solution,
• the Destination System is always the Customer System.

Cloud Connected Sensor Data-as-a-Service provides a way of retrieving
information of a transmitter from the Cloud Connected Sensor platform and
provide the possibility to store and monitor the data in the customer systems,
whatever it is.

8 EIO0000003797.01

Overview of Cloud Connected Sensor Data-as-a-Service

These processes are commonly referred to as ETL:
• E means Extract Data from Source System into Extract Format.
• T means Transform Data from Extract Format to Load Format.
• L means Load Data into Destination System

The Publish / Subscribe Messaging principle is used to make the data available to
the Destination System.

According to the ETL concept, the action of retrieving data from the Source
System is called Extract Process. However, in Publish / Subscribe Messaging
concept, the action of retrieving data from the data storage is called Consume
Process.

In the following chapters, the terminology Extract / Consume refers to the same
action of retrieving data from a Data Source. As the core concept of Cloud
Connected Sensor Data-as-a-Service is Publish / Subscribe Messaging, the
terminology Consume Process is preferred.

For more details on message-oriented concepts, refer to Publish / Subscribe
Messaging Principle and ETL Processes, page 36.

EIO0000003797.01 9

Publish / Subscribe Messaging and ETL Processes

Publish / Subscribe Messaging and ETL Processes

Publish / Subscribe Messaging and ETL Processes Applied to
Cloud Connected Sensor Data-as-a-Service

Overview

Conceptual view of publish / subscribe messaging and ETL processes applied to the Cloud Connected Sensor
Data-as-a-Service solution:

Principle

In Cloud Connected Sensor Data-as-a-Service case:
• The Cloud Connected Sensor Platform is the Message Publisher.
• The DaaS Customer Queue is the Publish / Subscribe Platform based on

Microsoft Azure Service Bus Queue technology.
• The Communication Mechanisms are the Microsoft Azure Service Bus API

(application program interface).
• The Message Consumer is the Customer who activated Cloud Connected

Sensor Data-as-a-Service.
• This is the Message Consumer who implements the Extract (Consume)

Process, Transform Process and Load Process.
After the extract process is executed, the data are loaded in the destination
system and are no longer stored in the Cloud Connected Sensor Platform.

WARNING
POTENTIAL COMPROMISE OF SYSTEM AVAILABILITY, INTEGRITYAND
CONFIDENTIALITY
• Place networked devices behind multiple layers of cyber defenses (such as

firewalls, network segmentation, and network intrusion detection and
protection).

• Use cybersecurity best practices (for example, least privilege, separation of
duties) to help prevent unauthorized exposure, loss, modification of data and
logs, or interruption of services.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Activating Data-as-a-Service from the Cloud Connected Sensor Platform gives
access to the Connection String.

10 EIO0000003797.01

Publish / Subscribe Messaging and ETL Processes

A Connection String is a string that specifies information about a Data Source and
the means of connecting to it. In the Cloud Connected Sensor Data-as-a-Service
case, the provided Connection String is for a Microsoft Azure Service Bus Queue.

For more information about how to use the provided Connection String, refer to
the Starter Solutions, and especially to the Consume function, page 24.

Additional information can be found on the Microsoft Azure website about how to
use a Connection String and how to connect to a Microsoft Azure Service Bus
Queue using dedicated API, refer to information about technologies used, page
41.

EIO0000003797.01 11

Data-as-a-Service in Cloud Connected Sensor

Data-as-a-Service in Cloud Connected Sensor

How to Enable Data-as-a-Service in Cloud Connected Sensor

Functionalities linked to Cloud Connected Sensor Data-as-a-Service

Overview

Cloud Connected Sensor Data-as-a-Service is available only for the reference
XIOT11SERMRCL. The Services page of the Cloud Connected Sensor Web
Platform is accessible only if an XIOT11SERMRCL device has been claimed.

The Services page of the Cloud Connected Sensor Web Platform permits to:
• Buy subscriptions (connections) for the XIOT11SERMRCL devices, using the

Cart icon.
• Suspend or abort all subscriptions for devices.
• Activate / Deactivate Data-as-a-Service.
• Regenerate the Connection String.
• Access the Starter Solutions files.

Cloud Connected Sensor Data-as-a-Service Behavior

Information about Cloud Connected Sensor Data-as-a-Service behavior:
• Once Data-as-a-Service is activated, all the data coming from

XIOT11SERMRCL device with a valid subscription are available in near real
time in the Customer Queue.

• In the case where, Cloud Connected Sensor Data-as-a-Service is already
Activated, and the Customer Claim a new Transmitter, a setup delay of 15
min is to be planned before data coming from this device are available in the
Customer Queue.

• All the data in the Customer Queue will be available for 15 days.
• Once the Customer connects to his Queue and Consumes a message, this

message is not available in the Queue anymore.
• In the DaaS Customer Queue, FIFO (First In First Out) order is respected.
• If the connection to the Queue (DaaS Queue) has been compromised, it is

possible to Regenerate his Connection String, using the dedicated button on
the Services page. The previous Connection String will be invalidated, and
the Customer Queue will be accessible only with the new Connection String.
All the data present in the Queue when the Connection String was
regenerated are kept.

• Only the messages coming from a device for which the Customer is the
Master will be forwarded in the Customer Queue. Thus, no data from devices
for which the Customer is Admin or User will be accessible in the Customer
Queue.

12 EIO0000003797.01

Data-as-a-Service in Cloud Connected Sensor

Step by Step Guide to Activate Cloud Connected Sensor Data-as-a-Service

Step Action

1 Once an XIOT11SERMRCL is claimed, Services tab on the Cloud Connected Sensor platform becomes accessible. Cloud
Connected Sensor Data-as-a-Service is managed from this page.

2 In order to activate Cloud Connected Sensor DaaS,click Activate button.

3 Cloud Connected Sensor DaaS is activated, and the Connection String (connection information) needed to access the
Customer Queue is available in the dedicated box.

4 Data for the transmitter is accessible in the DaaS Queue using the Connection String provided.

EIO0000003797.01 13

Data-as-a-Service in Cloud Connected Sensor

Messages Format of Transmitters

Messages Format

Overview

The Transmitters' data are stored in the Customer Queue using a JSON format.

Different JSON messages can be present in the DaaS Customer Queue. Each
JSON message has common attributes and they differ from each other only from
a few attributes.

The RecordType JSON attribute allows to know which JSON template is used.

Cloud Connected Sensor transmitters can send 5 types of data frame:
• A product configuration frame, page 17
• A network configuration frame, page 18
• A keep alive frame, page 19
• A measurement frame, page 20
• A geolocation frame, page 21

Timing Diagram

Frames transmitted by the transmitter:

Step Action Frames sent

1 Product activation after magnet detection Product configuration frame 10h

Network configuration frame 20h

Measurement frame 40h

2 State change of one of the two inputs Measurement frame 40h

3 State change of one of the two inputs
during transmission of the previous frame

NOTE: 20 s guard time between two
transmissions

Measurement frame 40h

4 One time per day Keep alive frame 30h

NOTE: The transmitted frames are in Little endian format
NOTE: A Geolocation frame FFh is generated by the Sigfox Backend each
time a transmitter message is received.

14 EIO0000003797.01

Data-as-a-Service in Cloud Connected Sensor

Interpretation of the JSON Messages

The following table presents information about how to interpret each field of the
JSON messages:

JSON Field Description Value Frame Type

10h 20h 30h 40h FFh

device Sigfox unique device ID (Transmitter
unique ID).

4 bytes ✓

time GMT timestamp (reception date). YYYY-MM-DDTHH:MM:SS ✓ -

avgSnr Average signal to noise ratio computed
from the last 25 messages.

NOTE: The device must have sent at
least 15 messages.

In dB - Float value with two
maximum fraction digits or N/A.

Not provided anymore by Sigfox
(always " null").

✓ -

data Reserved - ✓ -

duplicate Reserved - ✓ -

snr Signal to noise ratio. In dB - Float value with two
maximum fraction digits.

✓ -

station Sigfox Base Station Identifier. 2 bytes ✓ -

lat Latitude, rounded to the nearest integer, of
the base station which received the
message.

In Deg - with one fraction digit.

Not provided anymore by Sigfox
(always " null").

✓ -

lng Longitude, rounded to the nearest integer,
of the base station which received the
message.

In Deg - with one fraction digit.

Not provided anymore by Sigfox
(always " null").

✓ -

rssi Received Signal Strength. In dBm - Float value with two
maximum fraction digits.

If there is no data to be returned,
then the value is null.

✓ -

seqNumber Sequence numbering of the frames if
available.

- ✓ -

RecordType Type of the frame sent by the Cloud
Connected Sensor Transmitter.

• Product Configuration Frame.
• Network Configuration Frame.
• Keep Alive Frame.
• Measurement Frame.
• Geolocation Frame.

• 16 (10h)
• 32 (20h)
• 48 (30h)
• 64 (40h)
• 255(FFh)

✓

FrameCnt1 Numbering of the frames sent by the
transmitter. Incremented at each
transmission. Used to know if a frame has
been lost.

0…7 and loop again ✓ -

CommandDone Reserved - ✓ -

HWError Reserved - ✓ -

LowBatError Reserved - ✓ -

ConfigOK Reserved - ✓ -

S1ClosedCnt Number of times the Input 1 switched to
state Closed since its last transmission to
Cloud Connected Sensor platform.

0…255 - ✓ -

S2ClosedCnt Number of times the Input 2 switched to
state Closed since its last transmission to
Cloud Connected Sensor platform.

0…255 - ✓ -

S3ClosedCnt Number of times the Input 3 switched to
state Closed since its last transmission to
Cloud Connected Sensor platform.

0…255 - ✓ -

S4ClosedCnt Number of times the Input 4 switched to
state Closed since its last transmission to
Cloud Connected Sensor platform.

0…255 - ✓ -

EIO0000003797.01 15

Data-as-a-Service in Cloud Connected Sensor

JSON Field Description Value Frame Type

10h 20h 30h 40h FFh

S4PreviousState Previous state of the Input 4 connected to
the Cloud Connected Sensor transmitter.

1: Open

0: Closed

- ✓ -

S4State Current state of the Input 4 connected to
the Cloud Connected Sensor transmitter.

1: Open

0: Closed

- ✓ -

S3PreviousState Previous state of the Input 3 connected to
the Cloud Connected Sensor transmitter.

1: Open

0: Closed

- ✓ -

S3State Current state of the Input 3 connected to
the Cloud Connected Sensor transmitter.

1: Open

0: Closed

- ✓ -

S2PreviousState Previous state of the Input 2 connected to
the Cloud Connected Sensor transmitter.

1: Open

0: Closed

- ✓ -

S2State Current state of the Input 2 connected to
the Cloud Connected Sensor transmitter.

1: Open

0: Closed

- ✓ -

S1PreviousState Previous state of the Input 1 connected to
the Cloud Connected Sensor transmitter.

1: Open

0: Closed

- ✓ -

S1State Current state of the Input 1 connected to
the Cloud Connected Sensor transmitter.

1: Open

0: Closed

- ✓ -

S202 Reserved Fixed value (2). - ✓ -

S300 Reserved Fixed value (144). ✓ -

S301 Reserved Fixed value (72). ✓ -

S302 Reserved Fixed value (70). ✓ -

S303 Reserved Fixed value (70). ✓ -

S304 Reserved Fixed value (70). ✓ -

S305 Reserved Fixed value (70). ✓ -

S306 Reserved Fixed value (1). ✓ -

FrameCnt2 Reserved Same value as FrameCnt1. ✓ -

FrameCnt3 Reserved Same value as FrameCnt1. ✓ -

FrameCnt4 Reserved Same value as FrameCnt1. ✓ -

S1OpenCnt Number of times Input 1 switched to state
Open since its last transmission to Cloud
Connected Sensor platform.

0…255 - ✓ -

S2OpenCnt Number of times Input 2 switched to state
Open since its last transmission to Cloud
Connected Sensor platform.

0…255 - ✓ -

lat Latitude of the transmitter which
transmitted the frame.

In Deg - 32 bits float value. - ✓

lng Longitude of the transmitter which
transmitted the frame.

In Deg - 32 bits float value. - ✓

16 EIO0000003797.01

Data-as-a-Service in Cloud Connected Sensor

Product Configuration Frame (RecordType = 16 (10h))

Overview

For a Production Configuration Frame, RecordType equals 16 (10h) in the JSON
message.

Product Configuration Frames are sent by the Cloud Connected Sensor
transmitter only after its activation.

Receiving such a frame during normal operation of the product can be interpreted
as a sign of abnormal behavior.

Example of a Product Configuration Frame

{
"device": "88536A",
"time": "2018-10-04T13:39:30",
"avgSnr": "null",
"data": "100090484646464601",
"duplicate": "false",
"snr": "6.00",
"station": "0FBE",
"lat": "null",
"lng": "null",
"rssi": "-135.00",
"seqNumber": "1254",
"RecordType": 16,
"FrameCnt1": 0,
"CommandDone": 0,
"HWError": 0,
"LowBatError": 0,
"ConfigOK": 0,
"S300": 144,
"S301": 72,
"S302": 70,
"S303": 70,
"S304": 70,
"S305": 70,
"S306": 1,
"FrameCnt2": 0,
"FrameCnt3": 0,
"FrameCnt4": 0,
"SwitchError": 0,

}

EIO0000003797.01 17

Data-as-a-Service in Cloud Connected Sensor

Network Configuration Frame (RecordType = 32 (20h))

Overview

For a Network Configuration Frame, RecordType equals 32 (20h) in the JSON
message.

Network Configuration Frames are sent by the Cloud Connected Sensor
transmitter only after its activation.

Receiving such a frame during normal operation of the product can be interpreted
as a sign of abnormal behavior.

Example of a Network Configuration Frame

{
"device": "88536A",
"time": "2018-10-04T13:40:06",
"avgSnr": "null",
"data": "202002",
"duplicate": "false",
"snr": "8.40",
"station": "0FBE",
"lat": "null",
"lng": "null",
"rssi": "-136.00",
"seqNumber": "1255",
"RecordType": 32,
"FrameCnt1": 1,
"CommandDone": 0,
"HWError": 0,
"LowBatError": 0,
"ConfigOK": 0,
"S202": 2,
"FrameCnt2": 1,
"FrameCnt3": 1,
"FrameCnt4": 1,
"SwitchError": 0

}

18 EIO0000003797.01

Data-as-a-Service in Cloud Connected Sensor

Keep Alive Frame (RecordType = 48 (30h))

Overview

For a Keep Alive Frame, RecordType equals 48 (30h) in the JSON message.

Keep Alive Frames are sent by the Cloud Connected Sensor transmitter every 24
hours.

Example of a Network Configuration Frame

{
"device": "88AC1A",
"time": "2018-09-28T13:57:01",
"avgSnr": "null",
"data": "3060",
"duplicate": "false",
"snr": "13.21",
"station": "05A1",
"lat": "null",
"lng": "null",
"rssi": "-135.00",
"seqNumber": "723",
"RecordType": 48,
"FrameCnt1": 3,
"CommandDone": 0,
"HWError": 0,
"LowBatError": 0,
"ConfigOK": 0,
"FrameCnt2": 3,
"FrameCnt3": 3,
"FrameCnt4": 3,
"SwitchError": 0

}

EIO0000003797.01 19

Data-as-a-Service in Cloud Connected Sensor

Measurement Frame (RecordType = 64 (40h))

Overview

For a Measurement Frame, RecordType equals 64 (40h) in the JSON message.

Measurement Frames are sent by the Cloud Connected Sensor each time the
output state of the sensor is modified.

Example of a Network Configuration Frame

{
"device": "88AC1A",
"time": "2018-09-28T13:28:38",
"avgSnr": "null",
"data": "4080000100000000000001",
"duplicate": "false",
"snr": "8.20",
"station": "05A1",
"lat": "null",
"lng": "null",
"rssi": "-137.00",
"seqNumber": "716",
"RecordType": 64,
"FrameCnt1": 4,
"CommandDone": 0,
"HWError": 0,
"LowBatError": 0,
"ConfigOK": 0,
"S1ClosedCnt": 1,
"S2ClosedCnt": 0,
"S3ClosedCnt": 0,
"S4ClosedCnt": 0,
"S4PreviousState": 0,
"S4State": 0,
"S3PreviousState": 0,
"S3State": 0,
"S2PreviousState": 0,
"S2State": 0,
"S1PreviousState": 0,
"S1State": 0,
"FrameCnt2": 4,
"FrameCnt3": 4,
"FrameCnt4": 4,
"SwitchError": 0
"S1OpenCnt": 1,
"S2OpenCnt": 0,

}

20 EIO0000003797.01

Data-as-a-Service in Cloud Connected Sensor

Geolocation Frame (RecordType = 255 (FFh))

Overview

For a Geolocation Frame, RecordType equals 255 (FFh) in the JSON message.

Geolocation Frames are generated by the Sigfox Backend each time a transmitter
message is received

Example of a Geolocation Frame

{
"device": "88AC1A",
"RecordType": 255,
"lat": "46.751289126",
"lng": "1.0254862135",

}

EIO0000003797.01 21

Data-as-a-Service in Cloud Connected Sensor

Radio Data Transmission

Radio Frames Details

Overview

The transmitter sends four frame types on the SIGFOX® network:
• A product activation frame (code 10h).
• A network activation frame (code 20h).
• A keep alive frame (code 30h).
• An event frame for sensor inputs (code 40h).

Transmitted Product Configuration Frame Detail

Product configuration Data frame 10h:

Byte number Data Description

0 Record Type Code 10h (16)

1 Bit 0 Status 00h

Bit 1 = 1 if the battery voltage is ≤2.5 Vdc

Bit 2 = 1 if an hardware error has been detected

Bit 3…4 Reserved

Bit 5…7 Transmitted frames counter (00h…07h)

2 - 90h

3 - 48h

4 - 46h

5 - 46h

6 - 00h

7 - 00h

8 - 01h

9 - 00h

10 - 00h

Transmitted Network Configuration Frame Detail

Network configuration Data frame 20h:

Byte number Data Description

0 Record Type Code 20h (32)

1 Bit 0 Status 00h

Bit 1 = 1 if the battery voltage is ≤ 2.5 Vdc

Bit 2 = 1 if an hardware error has been detected

Bit 3…4 Reserved

Bit 5…7 Transmitted frames counter (00h…07h)

2 - 01h

3 - 01h

4 - 00h

5 - 00h

6 - 00h

7 - 00h

22 EIO0000003797.01

Data-as-a-Service in Cloud Connected Sensor

Byte number Data Description

8 - 00h

9 - 00h

10 - 00h

Transmitted Keep Alive Frame Detail

Keep alive Data frame 30h:

Byte number Data Description

0 Record Type Code 30h (48)

1 Bit 0 Status 00h

Bit 1 = 1 if the battery voltage is ≤ 2.5 Vdc

Bit 2 = 1 if an hardware error has been detected

Bit 3…4 Reserved

Bit 5…7 Transmitted frames counter (00h…07h)

Transmitted Measurement Frame Detail

Measurement Data frame 40h:

Byte number Data Description

0 Record Type Code 40h (64)

1 Bit 0 Status 00h

Bit 1 = 1 if the battery voltage is ≤ 2.5 Vdc

Bit 2 = 1 if an hardware error has been detected

Bit 3…4 Reserved

Bit 5…7 Transmitted frames counter (00h…07h)

2…3 Sensor 1 Event counter (00h…FFh)

4…5 Sensor 2 Event counter (00h…FFh)

6…9 Reserved -

10 Bit 0 Sensor State

1: Open, 2: Closed

Sensor 1 - Current state

Bit 1 Sensor 1 - State at previous frame

Bit 2 Sensor 2 - Current state

Bit 3 Sensor 2 - State at previous frame

Bit 4 Sensor 3 - Current state

Bit 5 Sensor 3 - State at previous frame

Bit 6 Sensor 4 - Current state

Bit 7 Sensor 4 - State at previous frame

EIO0000003797.01 23

Cloud Connected Sensor Data-as-a-Service Starter Solutions

Cloud Connected Sensor Data-as-a-Service Starter
Solutions

Overview
The Starter Solutions are documented software source code provided as a .NET
Core console application, that provides examples of how to implement Publish /
Subscribe Messaging and Extract, Transform, Load processes.

Two Destination Systems are covered by the Starter Solutions:
• A simple File stored in a specific Windows folder
• WonderWare Historian (not to be confused with WonderWare Online)
• Modbus over TCP

24 EIO0000003797.01

Cloud Connected Sensor Data-as-a-Service Starter Solutions

Conceptual View of the Starter Solutions

Overview

Conceptual view of the Starter Solutions for Cloud Connected Sensor Data-as-a-Service integration:

The Starter Solutions help to understand how each process operates and is
implemented. The Starter Solutions can be customized to Consume, Transform
and Load data into the Historian.

From an architecture point of view, all the Starter Solutions are architected in the
same way:

• A first part, dedicated to setups, in which the connection to the Source
System (the DaaS Customer Queue) and the Destination System is made.

• A core part, in which the 3 ETL (Extract, Transform, Load) processes are
implemented.

• A last part, in which disconnection from the Source System and the
Destination System is made.

Depending on the Destination System, the Transform Process may be optional.
Transform Process is always present in the Starter Solutions, but it may be a null
operator.

All Starter Solutions are provided as a standalone Microsoft Visual Studio
Solution, written in C# language for a .NET Core or .NET framework. .NET Core
(v2.0) and .NET Framework (v4.6) may be mandatory to run the Starter Solutions.
These Packages can be installed using Microsoft Visual Studio Installer.

Before running any Starter Solution, it is mandatory to do few modifications of the
source code. According each Starter Solution, information are provided about
what is expected to be modified.

Consume Function

This function is responsible for Subscribing to the Customer Queue and
Consuming messages from it. Subscribing to the Queue requires that the
Customer has information about the Queue including Endpoint and Read security
credentials. This information is provided in the Connection String.

The Consume Message function is the same code across Customers. The
function differs between Customers only in the Customer unique Connection
String.

Transform Function

This function is responsible for extracting the Payload from the Message received
from Consume Message and converting the Payload into a format which is usable
by the Load function.

EIO0000003797.01 25

Cloud Connected Sensor Data-as-a-Service Starter Solutions

For example, this function will convert the JSON Payload into an intermediate data
set format which appropriate for loading into the Customer's Historian. The data
set is then used by the Load Data function and loaded into the Customer
Historian.

Load Function

This function is responsible for taking the data set received from the Transform
function and inserting it into the Customer Destination System. Load Process is
the most specialized Process in the system because it must implement esoteric
Destination System data insertion logic using native libraries and classes.

26 EIO0000003797.01

Cloud Connected Sensor Data-as-a-Service Starter Solutions

Starter Solution for a Simple File

Overview

This Starter Solution is accessible in the .zip file XIOTDaaSStarterSolution_
Visual Studio.zip and provides an example of how to Consume, Transform
and Load data into a JSON File on a Windows System.

Required NuGet Packages, SDK and Libraries

Overview

This Starter Solution is provided as a .NET Core application.

Thus, only two packages have to be installed. It is the Microsoft.Azure.ServiceBus
(v3.1.0) and Microsoft.NET Core.App (v2.0).

Pre-Run Setup

Overview

Before running this Starter Solution, the value of two constant locals must be
modified:

• ServiceBusConnectionString must be updated with the Customer
Connection String (available on Cloud Connected Sensor web site, on the
Services page).
For example:
const string ServiceBusConnectionString = "Endpoint=
sb://dass-test.servicebus.windows.net/;
SharedAccessKeyName=RootManageSharedAccessKey;
SharedAccessKey=slVnJLa7QXMm8qEc9/pGm3xtrs1wKzf
+q3aImwq1iZI=;EntityPath=dass-queue1";

• FilePath must be updated with the path of the file in which the data
messages will be stored.
For example:
const string FilePath = "C:\\Users\\Public\\DaaSTest.
json";

Behavior of the Starter Solution

Overview

The XIOTDaaSStarterSolution_Visual Studio will do the following:

Step Action

1 Connect to an Azure Service Bus Queue (the DaaS Customer Queue) using the
Connection String provided in the constant local ServiceBusConnectionString.

2 Consume messages from the DaaS Customer Queue.

3 Display the received messages in the Console.

4 Store the received messages as is (JSON format) in a specific folder defined by the
constant local FilePath.

5 Clear the messages from the queue.

6 Close the connection to the DaaS Customer Queue.

EIO0000003797.01 27

Cloud Connected Sensor Data-as-a-Service Starter Solutions

This Starter Solution is expected to be used as following:

Step Action

1 Check that Data-as-a-Service is activated on Cloud Connected Sensor web platform.

2 Set up the Starter Solution by updating constant locals
(ServiceBusConnectionString and FilePath).

3 Trigger message sending by switching one of the two dry contacts connected to the
XIOT11SERMRCL transmitter.

4 Run the Starter Solution.

5 The messages sent by the transmitter are displayed in a Console window.

The messages sent by the transmitter are also available in the file referenced by
FilePath.

28 EIO0000003797.01

Cloud Connected Sensor Data-as-a-Service Starter Solutions

Starter Solution for WonderWare Historian

Overview

This Starter Solution is accessible in the zip file XIOTDaaSStarterSolution_
WonderWare.zip and provides an example of how to Consume, Transform and
Load data into a WonderWare Historian system.

Required NuGet Packages, SDK and Libraries

Overview

This Starter Solution is provided as a .NET Framework application since it uses
third-party NuGet Package for WonderWare Historian.

For this Starter Solution, two packages must be installed
• Microsoft.Azure.ServiceBus (v3.1.0) and .Net Framework (v4.7.1)
• WonderWare Historian SDK 2017 (v2.0)

In addition, a WonderWare Historian Server 2017 must be available.

Pre-Run Setup

Overview

Before running this Starter Solution, the following elements must be modified:
• ServiceBusConnectionString must be updated with the Customer

Connection String (available on Cloud Connected Sensor web site, on the
Services page).
For example:
const string ServiceBusConnectionString = "Endpoint=
sb://dass-test.servicebus.windows.net/;
SharedAccessKeyName=RootManageSharedAccessKey;
SharedAccessKey=slVnJLa7QXMm8qEc9/pGm3xtrs1wKzf
+q3aImwq1iZI=;EntityPath=dass-queue1";

• In the setUpWonderwareHistorianConnection() method, the Historian
Credentials must be updated:
◦ connectionArgs.ServerName must take the value of the Historian

Server Name.
◦ connectionArgs.UserName and connectionArgs.Password, must

be updated with the User Credentials used to connect the WonderWare
Historian.

EIO0000003797.01 29

Cloud Connected Sensor Data-as-a-Service Starter Solutions

Behavior of the Starter Solution

Overview

The XIOTDaaSStarterSolution_File will do the following:

Step Action

1 Connect to an Azure Service Bus Queue (the DaaS Customer Queue) using the
Connection String provided in the constant local ServiceBusConnectionString.

2 Connect to the WonderWare Historian Server using the connection information
provided (connectionArgs.ServerName, connectionArgs.UserName,
connectionArgs.Password).

3 Consume messages from the DaaS Customer Queue.

4 Display the received messages in the Console.

5 Store the received messages as is (JSON format) in the Historian Server using Tag
Format.

6 Clear the messages from the queue.

7 Close the connection to the DaaS Customer Queue and to the Historian Server.

This Starter Solution is expected to be used as following:

Step Action

1 Check that Data-as-a-Service is activated on Cloud Connected Sensor web platform.

2 Set up the Starter Solution by updating connection information for the DaaS Customer
Queue and the WonderWare Historian.).

3 Trigger message sending by switching one of the two dry contacts connected to the
XIOT11SERMRCL transmitter.

4 Run the Starter Solution.

5 The messages sent by the transmitter are displayed in a Console window.

The messages sent by the transmitter are also available in the WonderWare Historian.

Code Customization

The Starter Solution for WonderWare Historian is provided as a basic example.
The code must be adapted to the use case / environment.

For example, the WonderWare Tags management and Tags extended properties
may be modified.

NOTE: This Starter Solution has been implemented to parse only
Measurement frames retrieved from the DaaS Customer Queue. To parse
other frames, the existing code must be modified or an other methodology
must be implemented.

30 EIO0000003797.01

Cloud Connected Sensor Data-as-a-Service Starter Solutions

Starter Solution for Modbus over TCP

Overview

This Starter Solution is accessible in a zip file and provides an example of how to
Consume, Transform, and Load data into a Modbus TCP server that runs locally.

Required NuGet Packages, SDK, and Libraries

Overview

The Starter Solution is provided as a .NET Framework application since it uses
third-party NuGet Package for Modbus TCP Server.

2 Starter Solution zip files are available:
• App Starter Solution: XIOT_DaaS_SS_ModbusTCP_App_vx-y.zip
• Full Starter Solution: XIOT_DaaS_SS_ModbusTCP_Full_vx-y.zip

App Starter Solution

All the libraries (dll) necessary to run the Application are provided.

For this Starter Solution, one package must be installed:
• .Net Framework (v4.7.1)

The offline installer of the .Net Framework v4.7.1 is provided in the Application zip
file.

Full Starter Solution

The provided package includes:
• the source code of the application,
• the associated visual studio project,
• the necessary libraries (dll),
• the executable of program.

The source code is customizable and must be compiled to be used.

For this Starter Solution, three packages must be installed:
• Microsoft Azure Servicebus (v3.1.0)
• .Net Framework (v4.7.1)
• EasyModbusTCP (v5.5)

Pre-Run Setup

Overview

Before running this Starter Solution:
• If using the App Starter Solution, the Customer should launch the installer

NDP471-KB4033342-x86-x64-AllOS-ENU.exe

• The Customer should proceed with the installation for the package content.
• The Customer should update the two following configuration files:
◦ CONNECTION_STRING_CFG.txt is used to store the connection string of

the Customer DaaS Queue. Copy / paste your connection string into this
file.

◦ Then, in the DEVICE_ID_TABLE_CFG.txt file, the Customer is expected
to put the list of all his XIOT11SERMRCL transmitters that are expected to

EIO0000003797.01 31

Cloud Connected Sensor Data-as-a-Service Starter Solutions

send frames. This table is further used to map transmitters’ data into the
Modbus TCP Server registers.

NOTE: The format expected in this file is hexadecimal format in upper
case (00AABBCC) with one Transmitter ID per line.

Once done, the Customer can run the Application by executing the executable file.
NOTE: If using the App Starter Solution, the executable file named
XIOTDaaSStarterSolution_ModbusTCP.exe is located in the folder
Application\Release.

Behavior of the Starter Solution

Overview

The XIOTDaaSStarterSolution_ModBusTCP will do the following:

Step Action

1 Connect to an Azure Service Bus Queue (the DaaS Customer Queue) using the
Connection String provided in the configuration file.

2 Set up a local Modbus TCP Server

3 Consume messages from the DaaS Customer Queue.

4 Display the received messages in the Console.

5 Store the received messages data in several Modbus Registers.

6 Clear the messages from the queue.

7 Close the connection to the DaaS Customer Queue and stop the Modbus TCP Server if
the Customer presses any key twice.

This Starter Solution is expected to be used as following:

Step Action

1 Check that Data-as-a-Service is activated on Cloud Connected Sensor Web platform.

2 Set up the Starter Solution by updating connection information for the DaaS Customer
Queue and Device ID Table (configuration files).

3 Run the Starter Solution.

4 Trigger message sending by switching one of the two dry contacts connected to the
XIOT11SERMRCL transmitter.

5 The messages sent by the transmitter are displayed in a console and the data are
available in several registers of the Modbus TCP Server.

6 The Customer can then initiate a Modbus TCP communication with his SCADA /
monitoring system to read the data in the corresponding registers.

Code Customization

The Starter Solution for Modbus TCP is provided as a basic example. The code
must be adapted to the use case / environment.

For example, one thing that may be interesting for the Customer, is to customize
the register mapping according to his needs.

NOTE: This Starter Solution has been implemented to parse only
Measurement frames and Keep-Alive frames retrieved from the DaaS
Customer Queue. To parse other frames, the existing code must be modified
or another methodology must be implemented.

Modbus Server Configuration and Register Mapping

The Modbus Server initiated by the program starts listening on the active IPv4
address, on the port 502. The Modbus Server has the default unit ID 1. Unit ID and

32 EIO0000003797.01

Cloud Connected Sensor Data-as-a-Service Starter Solutions

Port can be tuned in the source code, however, no IPv4 address selection is
possible at the moment.

The data sent by a transmitter are saved in the Modbus Server registers. For this
purpose, application use only Holding Registers. The Modbus Server has a
capacity of 65535 Holding registers.

One transmitter is represented using 50 registers. Thus theoretically, this
application can handle more than 1200 transmitters.

If needed, the Customer can adapt the source code, to select and store only the
data that are relevant for him.

For each new transmitter, the registers in which the data of this transmitter can be
found are shifted by 50. For example, if the Customer has declared in the file
DEVICE_ID_TABLE_CFG.txt two device ID (=transmitter ID) 00AABBCC and
00DDEEFF. The data belonging to the device 00AABBCC can be found in the
registers 40001 to 40050. The data belonging to the device 00DDEEFF can be
found in the registers 40051 to 40100.

The data are stored in the 50 registers as follows:

Address
offset

Data Format Corresponding JSON
attribute

1 Transmitter ID ASCII representation of the 2 first character of the transmitter ID
(00AABBCC).

Device

2 Transmitter ID ASCII representation of the 2-next character of the transmitter ID
(00AABBCC).

Device

3 Transmitter ID ASCII representation of the 2-next character of the transmitter ID
(00AABBCC).

Device

4 Transmitter ID ASCII representation of the 2-last character of the transmitter ID
(00AABBCC).

Device

5 Timestamp 16 bits representation of the timestamp year. Time

6 Timestamp 16 bits representation of the timestamp month. Time

7 Timestamp 16 bits representation of the timestamp day. Time

8 Timestamp 16 bits representation of the timestamp hours. Time

9 Timestamp 16 bits representation of the timestamp minutes. Time

10 Timestamp 16 bits representation of the timestamp seconds. Time

11 Average SNR 16 bits representation of the transmitter Average SNR. Value is
truncated and represented as an unsigned value.

Not provided anymore by Sigfox (always " null").

avgSnr

12 SNR 16 bits representation of the transmitter SNR. Value is truncated and
represented as an unsigned value.

snr

13 Station ID ASCII representation of the 2 first character of the Sigfox base
station that received the Sigfox message (AABB).

Station

14 Station ID ASCII representation of the 2 first character of the Sigfox base
station that received the Sigfox message (AABB).

Station

15 Latitude 16 bits representation of the Sigfox base station latitude. Value is
truncated and represented as a signed value.

Not provided anymore by Sigfox (always " null").

lat

16 Longitude 16 bits representation of the Sigfox base station longitude. Value is
truncated and represented as a signed value.

Not provided anymore by Sigfox (always " null").

lng

17 RSSI 16 bits representation of the transmitter RSSI. Value is truncated
and represented as a signed value.

rssi

18 Sequence Number See JSON frame description. seqNumber

19 Record Type See JSON frame description. RecordType

20 Frame Counter 1 See JSON frame description. FrameCnt1

EIO0000003797.01 33

Cloud Connected Sensor Data-as-a-Service Starter Solutions

Address
offset

Data Format Corresponding JSON
attribute

21 HW Error See JSON frame description. HWError

22 Low Bat Error See JSON frame description. LowBatError

23 Sensor 1 Closed
Counter

See JSON frame description. S1ClosedCnt

24 Sensor 2 Closed
Counter

See JSON frame description. S2ClosedCnt

25 Sensor 2 Previous State See JSON frame description. S2PreviousState

26 Sensor 2 Current State See JSON frame description. S2State

27 Sensor 1 Previous State See JSON frame description. S1PreviousState

28 Sensor 1 Current State See JSON frame description. S1State

29 Sensor 1 Open Counter See JSON frame description. S1OpenCnt

30 Sensor 2 Open Counter See JSON frame description. S2OpenCnt

31 Transmitter Latitude
MSB

32 bits floating representation of the transmitter latitude.

In this register, only the first 16 bits (MSB) are present..

lat

32 Transmitter Latitude
LSB

32 bits floating representation of the transmitter latitude.

In this register, only the second 16 bits (LSB) are present..

lat

33 Transmitter Longitude
MSB

16 bits representation of the Sigfox base station longitude.

In this register, only the first 16 bits (MSB) are present.

lng

34 Transmitter Longitude
LSB

16 bits representation of the Sigfox base station longitude.

In this register, only the second 16 bits (LSB) are present..

lng

35 Sensor 3 Previous State See JSON frame description. S3PreviousState

36 Sensor 3 Current State See JSON frame description. S3State

37 Sensor 4 Previous State See JSON frame description. S4PreviousState

38 Sensor 4 Current State See JSON frame description. S4State

39 RESERVED RESERVED FOR FUTURE USE N/A

… … … …

49 RESERVED RESERVED FOR FUTURE USE N/A

50 Not Alive Flag Value set to 1 when no frames (Keep Alive or Measurement) have
been received since the last 25 hours for this device.

N/A

The information provided in this document and in the source code could change in
the future. It is recommended that the Customer consider this example as a
“prototype code” or as a “proof of concept”.

Data management:
• The registers of the server are accessible from Modbus/TCP clients in read-

only mode
• The Modbus/TCP server does not store the history of the data
• The values of all the registers are reseted after each start of the Modbus/TCP

server

34 EIO0000003797.01

Appendices
What’s in This Part

Publish / Subscribe Messaging Principle and ETL Processes36
Information Concerning Technologies Used ...41

EIO0000003797.01 35

Publish / Subscribe Messaging Principle and ETL Processes

Publish / Subscribe Messaging Principle and ETL
Processes

What’s in This Chapter

ETL Processes..37
Publish/Subscribe Messaging ..39

36 EIO0000003797.01

Publish / Subscribe Messaging Principle and ETL Processes

ETL Processes

ETL Processes Overview

Overview

This section provides common concepts and terminology required for the Cloud
Connected Sensor Data-as-a-Service solution.

The following figure presents the basic ETL concepts including processes,
systems and data flow (indicated by arrows):

• The Extract Process extracts data from the Source System and formats it
into a structured Extract Format.

• The Transform Process transforms the Extract Format data into a Load
Format.

• The Load Process loads the Load Format data into the Destination System.
ETL Logical Components

Independently of how these processes are implemented, Extract, Transform and
Load are common to all integration scenarios. Also, ETL always occurs in this
order: first Extract, then Transform, then Load.

Extract Process

Overview

The role of the Extract Process (also called Consume Process) is to extract data
from the Source System and output the data into the Extract Format so that it is
consumable by the Transform Process.

The Source System can be any type of data storage including these common
ones:

• Database (Relational Database, NoSQL DB, Graph DB, etc.)
• SCADA Historian
• File System (Logs, Analytic outputs etc.)
• Messaging System

Transform Process

Overview

It may be required to transform data from Extract Format to Load Format before
data can be loaded into a Destination System. This is the role of the Transform
Process.

The Transform Process is often implemented as part of the Load Process and not
seen as separate, but it is an independent process regardless of how it is coded or
deployed. After the data is transformed into a Load Format understood by the
Destination System (database prepared statement or file operations, etc.) it can
be loaded.

The Extract Format is required for the development scalability to support diverse
Destination Systems. Because the Extract Format is Destination System agnostic,
the Extract Process is decoupled from all Destination System specifics. The result
of this decoupling is a very simple Extract Process and an extensible integration

EIO0000003797.01 37

Publish / Subscribe Messaging Principle and ETL Processes

architecture, meaning a Destination System agnostic Extract Format can be
loaded into any Destination System. The Destination System owner or system
integrator is responsible for the creation of specialized Transform and Load
Processes.

As well as transforming from Extract to Load Formats, the Transform Process
must include data validation because invalid (yet correctly formatted) data can
cause corruption and data loss in Destination Systems.

Some topics of data validation are:
• Data-type
• Range Checks
• Constraints
• Referential Integrity (e.g. Relational Databases)
• Structure
• Nulls Allowed
• Duplication

The ultimate result of Data Transform is a set of data which is prepared to be
loaded into the Destination System.

Load Process

Overview

After transformation, data is read by the Load Data Process and loaded into the
Destination System. The Load Data Process executes basic database operations
using pre-validated, pre-formatted data with minimal processing.

The Load Data Process must be simple and robust. If the data load was not
successfully finished, the assumption should be (and logging should demonstrate)
that it was due to an external reason such as an incorrect behaviour of the
Transform Process, a network or connectivity interruption or an issue with the
Destination System (e.g. full disk).

Process activity logging is often required by Transform and Load Processes for
auditing purposes.

38 EIO0000003797.01

Publish / Subscribe Messaging Principle and ETL Processes

Publish/Subscribe Messaging

Overview

Publish/Subscribe Messaging (or Messaging) is a Push integration strategy in
which a data Producer pre-emptively pushes data messages to a Consumer.
Messaging presents many integration advantages, very few disadvantages and is
robust, proven and secure across company-to-company boundaries.

Basic Concept

Overview

The basic concept of messaging is:
• Publisher hosts a data storage and communications mechanism. This will be

called a Queue.
• Consumer Subscribes to this Queue
• Data Publisher Pushes data onto this Queue in the form of a Message
• Consumer receives the Message and processes the Data

Publish/Subscribe Messaging:

In public scenarios, the Queue is a publicly available network resource, such as a
news or weather feed, available to any Consumer which wishes to receive
messages from it. In a Data-as-a-Service integration scenario the Queue would
not be publicly available and only DaaS Customers would be able to Subscribe to
the Queue. In addition, a DaaS Customer only receives those messages which
belong to it; it cannot receive messages belonging to any other Customer.

Publish/Subscribe with Multiple Consumers:

Each Consumer (or DaaS Customer) subscribes to a logical queue dedicated to it.
It receives only messages send to its queue. A Consumer has no visibility to other
Consumer messaging queues, has no credentials for them, and cannot subscribe
to them.

Note on Cybersecurity

Overview

The Message Consumer uses outbound network connections to the Message
Queue and does not need to expose a public network endpoint. Cybersecurity
concerns for Messaging-based integration are therefore limited, especially for
Customers consuming messages on-premise.

EIO0000003797.01 39

Publish / Subscribe Messaging Principle and ETL Processes

In Messaging architectures, the Message Producer (Schneider Electric /
Telemecanique Sensors in Cloud Connected Sensor case) takes on the security
risk: hosting, securing, managing, and exposing the network resource (the
Queue).

To receive its messages, the Message Consumer must initiate a session to the
Queue and query it. Rather than having the Queue connected to the Message
Consumer via a public network endpoint, the Message Consumer initiates an
outbound connection from the Customer network to the Queue network endpoint.
While there are some differences, this is analogous to a web client connecting to a
web server to request web site content and so presents limited network security
risk for the Customer.

It is also possible that the Message Consumer connects to the Queue for a short
period before disconnecting and reconnecting. This further reduces cyberattack
risk because the Message Consumer use a non-determinant sequence of volatile
outbound ports.

40 EIO0000003797.01

Information Concerning Technologies Used

Information Concerning Technologies Used
What’s in This Chapter

Microsoft Azure Service Bus ..41
Microsoft Visual Studio ..41

Microsoft Azure Service Bus

Overview

The DaaS Customer Queue is an Azure Service Bus Queue. Information about
this technology is available from the web site of Microsoft.

Here is a link to the Azure Service Bus Messaging documentation.

https://docs.microsoft.com/en-us/azure/service-bus-messaging/

On this page all the key information concerning Azure Service Bus can be found:
• What is Azure Service Bus?
• How it works?
• Tutorials and example code to interact with Azure Service Bus
• Any other key information

Microsoft Visual Studio

Overview

The Starter Solutions are provided as Microsoft Visual Studio .NET Core console
application. Information about this Integrated Development Environment is
available from the web site of Microsoft.

Here are two links to the Visual Studio documentation:
• Visual Studio General Information: https://visualstudio.microsoft.com/
• Visual Studio Documentation: https://docs.microsoft.com/en-us/visualstudio

EIO0000003797.01 41

https://docs.microsoft.com/en-us/azure/service-bus-messaging
https://visualstudio.microsoft.com
https://docs.microsoft.com/en-us/visualstudio

Glossary

D
Destination System:

the system owned by Destination Partner into which the Load Formatted data is
Loaded by the Load Process.

E
ETL Processes:

the three processes implemented by the message consumer:
• Extract process
• Transform process
• Load process

Extract Format:

the format data is written to by the Extract Process for use by the Transform
Process.

Extract Process:

the process which extracts data from the Source System and writes to the Extract
Format.

I
Integration Partners:

the partners involved in an integration solution. Partners could be called Source
Partner and Destination Partner. In this case, Cloud Connected Sensor is the
Source Partner and the DaaS Customer is the Destination Partner.

J
JSON:

JavaScript Object Notation is a terse, readable, structured data format used for
Device-to-Cloud and Cloud-to-Device messaging. Many stream processing
applications are built to natively consume JSON structures.

L
Load Format:

the format data is written to by the Transform Process for use by the Load
Process.

Load Process:

the process which loads data Load Format into the Destination System.

S
Source System:

system owned by Source Partner which contains the original data which is
extracted by the Extract Process.

T
Transform Process:

the process which transforms data in Extract Format into data in Load Format.

EIO0000003797.01 43

Schneider Electric
35 rue Joseph Monier
92500 Rueil Malmaison
France

+ 33 (0) 1 41 29 70 00

www.tesensors.com

As standards, specifications, and design change from time to time,
please ask for confirmation of the information given in this publication.

© 2020 – Schneider Electric. All rights reserved.

EIO0000003797.01

	Cloud Connected Sensor Data-as-a-Service
	Safety Information
	About the Book
	Overview of Cloud Connected Sensor Data-as-a-Service
	Cloud Connected Sensor Legacy Offer
	Cloud Connected Sensor Data-as-a-Service Offer

	Publish / Subscribe Messaging and ETL Processes
	Publish / Subscribe Messaging and ETL Processes Applied to Cloud Connected Sensor Data-as-a-Service

	Data-as-a-Service in Cloud Connected Sensor
	How to Enable Data-as-a-Service in Cloud Connected Sensor
	Functionalities linked to Cloud Connected Sensor Data-as-a-Service
	Step by Step Guide to Activate Cloud Connected Sensor Data-as-a-Service

	Messages Format of Transmitters
	Messages Format
	Product Configuration Frame (RecordType = 16 (10h))
	Network Configuration Frame (RecordType = 32 (20h))
	Keep Alive Frame (RecordType = 48 (30h))
	Measurement Frame (RecordType = 64 (40h))
	Geolocation Frame (RecordType = 255 (FFh))

	Radio Data Transmission
	Radio Frames Details

	Cloud Connected Sensor Data-as-a-Service Starter Solutions
	Conceptual View of the Starter Solutions
	Starter Solution for a Simple File
	Required NuGet Packages, SDK and Libraries
	Pre-Run Setup
	Behavior of the Starter Solution

	Starter Solution for WonderWare Historian
	Required NuGet Packages, SDK and Libraries
	Pre-Run Setup
	Behavior of the Starter Solution

	Starter Solution for Modbus over TCP
	Required NuGet Packages, SDK, and Libraries
	Pre-Run Setup
	Behavior of the Starter Solution

	Appendices
	Publish / Subscribe Messaging Principle and ETL Processes
	ETL Processes
	ETL Processes Overview
	Extract Process
	Transform Process
	Load Process

	Publish/Subscribe Messaging
	Basic Concept
	Note on Cybersecurity

	Information Concerning Technologies Used
	Microsoft Azure Service Bus
	Microsoft Visual Studio

	Glossary

