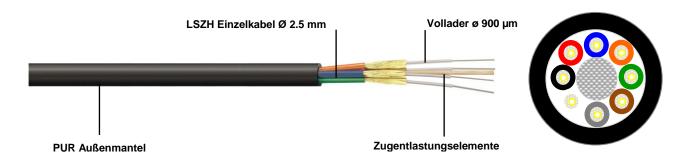
DATENBLATT

HITRONIC® TORSION

DB_HITRONIC _TORSION_DE (Version 4.0) gültig ab: 01.09.2014

1. Beschreibung

Bezeichnung: A/J-V(ZN)H11Y


Aufteilbares, bewegliches und leichtes Universal-Breakoutkabel (basierend auf Militär-Norm MIL-C-85045) mit bis zu 12 Einzelkabeln, halogenfreien und flammwidrigen Einzel- und Außenmantel, UV-resistent, hohe Flexibilität und ausgezeichnete mechanische Beständigkeit

2. Anwendungen

Universal (Außen- und Innenbereich), zur Verbindung von bewegten Einheiten, für direkte Steckerkonfektion, innerhalb von Wind-Türmen

Verlegeart: in Kabelkanälen, auf Kabelpritschen, Kabelrohre, innerhalb von Gebäuden im Steige- und Horizontalbereich

3. Aufbau

Anordnung	Bis zu 12 Einzelkabel bestehend aus Vollader mit Aramid- Zugentlastungselemente und LSZH Einzelmantel (Ø 2.5 mm), Zentralelement und PUR Außenmantel
Innenmantel	LSZH, halogenfrei, flammwidrig, geringe Rauchentwicklung
Außenmantel	Polyurethan (PUR), halogenfrei, flammwidrig, UV-resistent
Farbe Innenmantel	Blau, orange, grün, braun, grau, weiß, rot, schwarz, gelb, violett, rosa, türkis
Farbe Außenmantel	Schwarz (RAL 9005)
Farbkodierung Einzelelemente	Farbkodiert (siehe Farben Innenmantel)
Zugentlastung	Nichtmetallisch (Aramid-Garne)
Armierungsart	-

Ersteller: J. Lim / PNM	Dalumaanti	DR HITDONIC TORSION DE	Diett 1 van 2
freigegeben: J. Beck / PNM	Dokument:	DB_HITRONIC_TORSION_DE	Blatt 1 von 3

DATENBLATT

HITRONIC® TORSION

DB_HITRONIC _TORSION_DE (Version 4.0)

gültig ab: 01.09.2014

4. Optische und geometrische Kabel-Daten (und Glasfaser-Daten)

Multimode-Faser			50/125 μm	50/125 μm	50/125 μm	62.5/125 μm
			OM4	ОМЗ	OM2	OM1
Dämpfung	@ 850 nm dB @ 1300 nm dB	/km	, , ,			
Bandbreite	@ 850 nm MH @1300 nm MH					
Numerische Apertur			$0,2 \pm 0,015$	$0,2 \pm 0,015$	$0,2 \pm 0,015$	$0,275 \pm 0,015$
Kerndurchmesser	μm		50 ±2,0	50 ±2,0	$50 \pm 2,0$	62,5 ± 2,5
Manteldurchmesser	μm		125 ± 1,0	125 ± 1,0	125 ± 1,0	125 ± 2
Durchmesser der Primärbeschichtung	μm		242 ± 5	242 ± 5	242 ± 5	245 ± 10
Singlemode-Faser					9/125 µ	ım
					(ITU-T G.65	(2.D)
Dämpfung	@ 1310	nm	dB/km		≤ 0,4 (0 ₀	,35)
	@ 1550	nm	dB/km		≤ 0,4 (0 ₅	,21)
Chromatische Dispersion	@ 1310 nm ps/(nm-km) ≤ 3,0					
	@ 1550 r	ım	ps/(nm-km)		≤ 18	
Nulldurchgang der Dispersion	ı	ı Nm		1300 - 1322		
Cut-off Wellenlänge	Nm		ı	≤ 1260		
PMD		ps/k	cm		≤ 0,1	
Modenfelddurchmesser		μm	1		9,0 ± 0),4
Manteldurchmesser	μm		1	125 ± 1		
Durchmesser der Primärbeschichtung	μm 242 ± 7			7		

5. Temperaturbereich

Betriebstemperatur	-40°C bis +70°C
Verlegetemperatur	0°C bis +50°C
Lagertemperatur	-40°C bis +70°C

6. Mechanische Eigenschaften

Max. Faseranzahl / Einzelkab	el	12
Einzelkabeldurchmesser (mm)	2,5
Außenkabeldurchmesser (mm	1)	Siehe Übersicht
Kabelgewicht (kg/km)		Siehe Übersicht
Min. Biegeradius (mm)	ohne Zugbelastung mit Zugbelastung	15 x D 20 x D
Max. Zugbelastbarkeit (N)	fest verlegt kurzzeitig	Siehe Übersicht
Max. Querdruck (N)		2000

Ersteller: J. Lim / PNM	Dokument:	DB_HITRONIC_TORSION_DE	Blatt 2 von 3
freigegeben: J. Beck / PNM	Dokument.	DB_HTRONIC_TORSION_DE	Diatt 2 voil 3

DATENBLATT

HITRONIC® TORSION

DB_HITRONIC _TORSION_DE (Version 4.0)

gültig ab: 01.09.2014

7. Chemische Eigenschaften

LSZH Mantel	Flammwidrig (IEC 60332-3), halogenfrei, geringe Rauchentwicklung
PUR Außenmantel	Flammwidrig (IEC 60332-3), halogenfrei, UV-resistent

8. EG Richtlinien

Nicht anwendbar

9. Zulassungen und Normen

- RoHS
- Mechanische und Umwelt-Anforderungen für Glasfaserkabel nach EN 187000 und IEC 60794
- Flammwidrigkeit entsprechend Anforderungen nach IEC 60332-1, IEC 60332-3
- Halogenfrei nach IEC 60754-1
- Basierend auf Militär-Norm MIL-C-85045

10. Sortimentsübersicht

Artikel- nummer	Artikelbeschreibung	Anzahl Faser	Außen-Ø (mm)	Gewicht (kg/km)	Zugkraft lang/kurz (N)	
Multimode	Multimode 50/125 μm OM4					
26310402	HITRONIC® TORSION 2G 50/125 OM4	2	$8,4 \pm 0,3$	54	600/1000	
26310404	HITRONIC® TORSION 4G 50/125 OM4	4	$8,4 \pm 0,3$	54	800/1350	
26310408	HITRONIC® TORSION 8G 50/125 OM4	8	11,6 ± 0,5	95	1600/2700	
26310412	HITRONIC® TORSION 12G 50/125 OM4	12	$14,7 \pm 0,5$	122	2400/3500	
Multimode	50/125 μm OM3					
26310302	HITRONIC® TORSION 2G 50/125 OM3	2	$8,4 \pm 0,3$	54	600/1000	
26310304	HITRONIC® TORSION 4G 50/125 OM3	4	$8,4 \pm 0,3$	54	800/1350	
26310308	HITRONIC® TORSION 8G 50/125 OM3	8	11,6 ± 0,5	95	1600/2700	
26310312	HITRONIC® TORSION 12G 50/125 OM3	12	14,7 ± 0,5	122	2400/3500	
Multimode	50/125 μm OM2					
26310202	HITRONIC® TORSION 2G 50/125 OM2	2	$8,4 \pm 0,3$	54	600/1000	
26310204	HITRONIC® TORSION 4G 50/125 OM2	4	$8,4 \pm 0,3$	54	800/1350	
26310208	HITRONIC® TORSION 8G 50/125 OM2	8	$11,6 \pm 0,5$	95	1600/2700	
26310212	HITRONIC® TORSION 12G 50/125 OM2	12	14,7 ± 0,5	122	2400/3500	
Multimode	62,5/125 μm OM1					
26310102	HITRONIC® TORSION 2G 62.5/125	2	$8,4 \pm 0,3$	54	600/1000	
26310104	HITRONIC® TORSION 4G 62.5/125	4	$8,4 \pm 0,3$	54	800/1350	
26310108	HITRONIC® TORSION 8G 62.5/125	8	11,6 ± 0,5	95	1600/2700	
26310112	HITRONIC® TORSION 12G 62.5/125	12	14,7 ± 0,5	122	2400/3500	
Singlemode 9/125 µm OS2						
26310902	HITRONIC® TORSION 2E 9/125 OS2	2	$8,4 \pm 0,3$	54	600/1000	
26310904	HITRONIC® TORSION 4E 9/125 OS2	4	$8,4 \pm 0,3$	54	800/1350	
26310908	HITRONIC® TORSION 8E 9/125 OS2	8	$11,6 \pm 0,5$	95	1600/2700	
26310912	HITRONIC® TORSION 12E 9/125 OS2	12	14,7 ± 0,5	122	2400/3500	

Ersteller: J. Lim / PNM	Dokumont	DB HITRONIC TORSION DE	Blatt 3 von 3
freigegeben: J. Beck / PNM	Dokument.	DP_UILKONIC_LOKSION_DE	Diall 3 VOII 3

KASC1 / 10.05.2016 / freigegeben