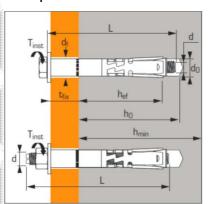
In acciaio zincato



ETA Opzione 1 - n°05/0044

APPLICAZIONI

Per usi sensibili ai fini dei requisiti essenziali 1 e 4 del reg. prod. da Costruzioni (CPR 305/2011), in esposizione al fuoco e rischio sismico di categoria C1 o C2.

Esempi: strutture in acciaio, staffaggio anti-sismico, strutture in legno, canalizzazioni e tubazioni, macchinari, serbatoi, serramenti industriali, guide per impianti di sollevamento,

MATERIALI e PROTEZIONE

Barra filettata (versione. E)

Classe 8.8 EN 20898-1

Vite (versione, V)

Classe 8.8 EN 20898-1

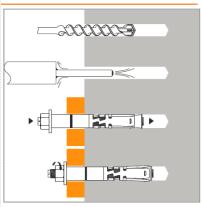
Camicia d'espansione

355 MC EN 10-149-2

Cono espansione

Acciaio 35 MF6Pb

Dado


Acciaio, grado 8, ISO 898-2

Rondella

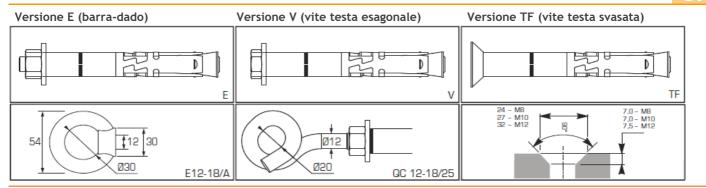
F12T4 NF A37501

Tutti i componenti sono protetti con zincatura elettrolitica (Zn5C/Fe) di spess. minimo 5 µm, NFA 91102

INSTALLAZIONE

Ancorante ad espansione ad alta resistenza

Ancorante ad alta resistenza, ad espansione per avvitamento, per ancoraggio passante, con funzione strutturale e non-strutturale, nel calcestruzzo teso (calcestruzzo fessurato) o compresso (non-fessurato)


Dat	i tecnici										
		Prof.	Spess.	Spess.	Ø	Prof.	ø	Ø		Coppia	
Triga	Z	di	max	minimo	di	di	di	foro	L totale	max	Codice
XTRE	M	posa	pezzo	del cls	filettatura	foratura	foratura	pezzo	totale	serraggio	Coulce
		mm	mm	mm	mm	mm	mm	mm	mm	Nm	
		h _{ef}	t _{fix}	h _{min}	d	h ₀	d_0	dr	L	T _{inst}	-
٧	V 6-10/5		5						65		050673
	V 6-10/20	50	20	100	6	70	10	12	80	50	050674
E	E 6-10/30		30						117		050675
	V 8-12/1		1						65		050677
٧	V 8-12/10		10						80		050678
•	V 8-12/20		20						90		050679
	V 8-12/50	60	50	120	8	80	12	14	120	60	053001
	E 8-12/20	00	20	120		00	12	• •	99	00	050681
Е	E 8-12/35		35						114		050683
_	E 8-12/55		55						134		050684
	E 8-12/95		95						174		050685
	V10-15/1		1						75		050687
٧	V10-15/10		10						95		050688
·	V10-15/20		20						105	70	050689
	V10-15/55	70	55	140	10	90	15	17	140		053003
	E10-15/20		20			, ,			114		050691
Е	E10-15/35		35						129		050692
_	E10-15/55	-	55						149		050693
	E10-15/100		100						194		050694
	V12-18/10		10						105	_	050696
٧	V12-18/25					120	-	050697			
	V12-18/55		55				18		150	- 80	053004
	E12-18/0	80	0	160	12	105		20	120		050669
_	E12-18/25		25			103			132		050698
Ε	E12-18/45		45						152		050699
	E12-18/65		65						172		050701
	E12-18/100		100						207		050702
.,	V16-24/10		10	-					130		050704
V	V16-24/25		25	-					145		050705
-	V16-24/50	100	50	200	16	131	24	25	170	100	050710
_	E16-24/25		25	-					159		050706
Ε	E16-24/55		55						189		050707
	E16-24/100		100						234		050708
V	V20-28/25		25						170		050711
_	E20-28/25	125	25	250	20	157	28	31	192	125	050712
Ε	E20-28/60		60						227	-	050713
	E20-28/100	(0	100	120		90	42	4.4	257		050714
	TF 8-12/16	60	16	120	8	80	12	14	85	60	050686
TF	TF 8-12/26	60	26	120	8	80	12	14	95	60	053002
	TF10-15/27	70	27	140	10	90 105	15	17	105	70	050695
	TF12-18/40	80	40	160	12	105	18	20	130	80	050715
E	E12-18/A	80	Α	160	12	105	18	-	162	80	050703
QC	QC12-18/	80		160	12	105	18	-	178	80	050671

Car	Caratteristiche meccaniche									
Spit T	Spit Triga Z XTREM			M 8	M10	M12	M16	M20		
$\mathbf{f}_{\mathbf{u}\mathbf{k}}$	N/mm ²	Resistenza a trazione	800	800	800	800	800	630		
f_{yk}	N/mm ²	Resistenza a snervamento	640	640	640	640	640	660		
S _{eq, V}	mm ²	Sezione resistente (ver. V)	39,2	76,1	108,8	175,3	335,1	520,2		
S _{eq, E}	mm ²	Sezione resistente (ver. E)	35,2	61,8	62,0	104,1	183,3	277,3		
Wel	mm³	Modulo elastico	12,7	31,2	62,3	109,2	277,5	541,0		
M ⁰ _{Rk,s}	Nm	Momento flett. caratt.	12,2	30,0	59,8	104,8	266,4	538,8		
M	Nm	Momento flett. raccom.	5,8	12,40	24,8	43,5	110,7	216,0		

Spit - ITW Construction Products Italy Srl - 35127 Padova - n. verde 800 809017 - tech@spit.it - www.spit.it

In acciaio zincato

2/6

Le resistenze contenute in questa pagina forniscono un'indicazione di massima sulle prestazioni dell'ancorante. Non devono essere usate per la progettazione conforme all'All. C - ETAG 001. Per questo utilizzare il software i-Expert o le pagine "Metodo CC".

 γ_{Mc} = 1,5

Il software per la progettazione dei punti di fissaggio è liberamente disponibile on-line: www.spit.com/i-expert

Resistenze ultime $(N_{Ru,m}, V_{Ru,m})$ / Resistenze caratteristiche (N_{Rk}, V_{Rk})

Le resistenze ultime medie sono ottenute da prove alle condizioni ammissibili di servizio.

TRAZIONE [kN]	1 kN ≈ 100 Kg									
Misura	M 6	M 8	M10	M12	M16	M20				
Calcestruzzo cor	Calcestruzzo compresso (non-fessurato) - C20/25									
h _{ef}	50	60	70	80	100	125				
N _{Ru,m}	18,2	27,5	45,9	54,4	103,6	124,4				
N _{Rk}	16,0	19,9	36,0	34,2	61,9	85,9				
Calcestruzzo tes	o (fessu	rato) - C	20/25							
h _{ef}	50	60	70	80	100	125				
N _{Ru,m}	15,1	20,3	33,3	50,3	88,5	113,3				
N _{Rk}	11,5	14,8	26,5	36,6	70,4	90,1				

TAGLIO [kl	1 kN ≈ 100 Kg										
Misura	M 6	M 8	M10	M12	M16	M20					
Versione V - Calcestruzzo teso o compresso - C20/25											
$V_{Ru,m}$	29,2	41,7	68,0	95,7	159,0	228,2					
V_{Rk}	25,9	38,6	58,8	83,3	141,6	206,0					
Versione E -	Calcestruzz	o teso o	compres	so - C20	/25						
$V_{Ru,m}$	20,0	26,2	43,1	57,0	116,0	135,9					
V_{Rk}	15,7	22,0	36,4	52,0	110,0	124,9					

Resistenze di progetto (N_{Rd}, V_{Rd}) per ancoranti isolati senza effetto bordo

TRAZIONE [kN] 1 kN ≈ 100 Kg

Misura M 6 M 8 M10 M12 M16 M20

Calcestruzzo compresso (non-fessurato) - C20/25

$$h_{ef}$$
 50 60 70 80 100 125

 N_{Rd} 10,7 13,3 24,0 22,8 41,3 57,3

Calcestruzzo teso (fessurato) - C20/25

 h_{ef} 50 60 70 80 100 125

 N_{Rd} 7,7 9,9 17,7 24,4 46,9 60,1

TAGLIO [kN]	AGLIO [kN]									
Misura	M 6	M 8	M10	M12	M16	M20				
Versione V - Calcestruzzo teso o compresso - C20/25										
V_{Rd}	20,7	30,9	47,0	66,6	113,3	137,3				
Versione E - C	Versione E - Calcestruzzo teso o compresso - C20/25									
V _{Rd}	12,6	17,6	29,1	41,6	88,0	99,9				
$\gamma_{MC} = 1,25$										

Resistenze raccomandate (N_{Rec} , V_{Rec}) per ancoranti isolati senza effetto bordo

 $N_{Rec} = \frac{N_{Rk}}{\gamma_M \gamma_F}$

17	_		Rk
V _{Rec}	_	γ_{M}	$\gamma_{\rm F}$

 $V_{Rd} = \frac{V_{Rk}}{\gamma_M}$

TRAZIONE [kN] 1 kN ≈ 100										
Misura	M 6	6 M 8 M10 M12		M16	M20					
Calcestruzzo compresso (non-fessurato) - C20/25										
h _{ef}	50	35	42	50	64	74				
N_{Rec}	7,6	9,5	17,1	16,3	29,5	40,9				
Calcestruzzo tes	o (fessu	rato) - C	20/25							
h _{ef}		48	52	68	86	100				
N_{Rec}		7,0	12,6	17,4	33,5	42,9				
· - 1 /	· - 1	5								

TAGLIO [kN] 1 kN ≈ 100 Kg										
Misura	М 6	M 8	M10	M12	M16	M20				
Versione V - Calcestruzzo teso o compresso - C20/25										
V _{Rec}	14,8	22,1	33,6	47,6	80,9	98,1				
Versione E - 0	Calcestruzz	o teso o	compres	so - C20	/25					
V_{Rd}	9,0	12,6	20,8	29,7	62,9	71,4				
$\gamma_{F} = 1,4;$	$\gamma_{MC} = 1$.25								

In acciaio zincato

Metodo Spit CC (Valori conformi a ETA) per azioni statiche o quasi-statiche

TRAZIONE in kN Resistenza a sfilamento

 $N_{Rd,p} = N_{Rd,p}^0 \cdot f_p$

0.000	<i>(α, ρ</i>	· Ku, j	0 - 0	1						
N ⁰ _{Rd, p}	Resistenza di progetto a sfilamento									
Misura	M 6	M 8	M10	M12	M16	M20				
Calcestruzzo compresso (non-fessurato)										
h _{ef}	50	60	70	80	100	125				
N ⁰ R _{d, p} (C20/25)	=	13,3	-	-	-	-				
Calcestruzzo teso (fes	surato)									
h _{ef}	50	60	70	80	100	125				
N ⁰ R _{d, p} (C20/25)	3,3	8,0	10,6	-	-	-				
4.5										

Resistenza del calcestruzzo

 $N_{Rd,c} = N_{Rd,c}^0 \cdot f_b \cdot \psi_s \cdot \psi_{c,N}$

N ⁰ _{Rd. c}	Resistenza di progetto del calcestruzzo										
Misura	M 6	M 8	M10	M12	M16	M20					
Calcestruzzo compresso (non-fessurato)											
h _{ef}	50	60	70	85	100	125					
N ⁰ R _{d,c} (C20/25)	11,9	15,6	19,7	24,0	33,6	47,0					
Calcestruzzo teso (fe	essurato)										
h _{ef}	50	60	70	85	100	125					
N ⁰ R _{d,c} (C20/25)	8,5	11,2	14,1	17,2	24,0	33,5					
1 E											

Resistenza dell'acciaio

N _{Rd, s}		Resistenza di progetto dell'acciaio							
Misura	M 6	M 8	M10	M12	M16	M20			
NR _{d,s}	10,7	19,5	30,9	44,9	83,7	130,7			
V ₁₁₀ = 1.5									

 $N_{Rd} = min (N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$ $\beta_N = N_{Sd} / N_{Rd} \le 1$

TAGLIO in kN

Resistenza a rottura del bordo

 $V_{Rd,c} = V_{Rd,c}^0 \cdot f_b \cdot f_{\beta \nu} \cdot \psi_{S-C,\nu}$

V ⁰ _{Rd,c}	Resisten	Resistenza di progetto a rottura bordo, alla minima distanza dal bordo (C_{min})							
Misura	M 6	M 8	M10	M12	M16	M20			
Calcestruzzo compresso (non-fessurato)									
h _{ef}	50	60	70	80	100	125			
C _{min}	50	60	70	80	100	125			
S _{min}	100	100	160	200	220	300			
V ⁰ _{Rd,c} (C20/25)	3,4	4,9	6,8	9,3	13,6	26,1			
Calcestruzzo teso (fe	essurato)								
h _{ef}	50	60	70	80	100	125			
C _{min}	50	60	70	80	100	125			
S _{min}	100	100	160	200	220	300			
V ⁰ _{Rd,c} (C20/25)	2,4	3,5	4,8	6,6	9,7	18,7			
v = 1 5									

Resistenza a scalzamento (pry-out)

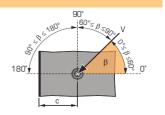
 $V_{Rd,cp} = V_{Rd,cp}^{0} \cdot f_b \cdot \psi_s \cdot \psi_{c,N}$

V ⁰ _{Rd. cp}	Resistenza di progetto del calcestruzzo							
Misura	M 6	M 8	M10	M12	M16	M20		
Calcestruzzo compresso	(non-fe	ssurato)					
h_{ef}	50	60	70	80	100	125		
$V^{0}R_{d,cp}$ (C20/25)	11,9	31,2	39,4	48,1	67,2	93,9		
Calcestruzzo teso (fessu	rato)							
h_{ef}	50	60	70	80	100	125		
$N^0R_{d,c}$ (C20/25)	8,5	22,3	28,1	34,3	48,0	67,1		

Resistenza dell'acciaio

V _{Rd, s}	Resistenza di progetto dell'acciaio								
Misura	M 6	M 8	M10	M12	M16	M20			
V _{Rd,s} - Versione V, TF	18,7	26,1	39,3	58,2	93,8	138,8			
V _{Rd,s} - Versione E	11,4	15,2	24,8	37,9	74,5	87,9			
γ_{Mc} = 1,25									

 V_{Rd} = min ($V_{Rd,c}$; $V_{Rd,cp}$; $V_{Rd,s}$) $\beta_V = V_{Sd} / V_{Rd} \le 1$


$\beta_N + \beta_v \le 1,2$

EFFETTO DELLA RESISTENZA DEL CALCESTRUZZO

Classe del cls	fb	Classe del cls	fb	
C25/30	1,10	C40/50	1,41	
C30/37	1,22	C45/55	1,48	
C35/45	1.34	C50/60	1.55	

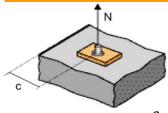
INFLUENZA DELLA DIREZIONE DEL TAGLIO

Angolo β [°] 0 - 55 60 1,1 90 - 180 2,0

In acciaio zincato

Metodo Spit CC (Valori conformi a ETA)

$$\Psi_{\rm S} = 0.5 + \frac{\rm S}{6 \, h_{\rm ef}}$$


 $S_{min} < S < S_{cr,N}$ $S_{cr,N} = 3 h_{ef}$

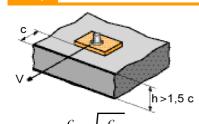
 Ψ_S si applica per ogni distanza S che influenzi il gruppo di ancoranti

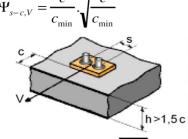
Distanza S				Cald	Fattore di riduzione ⁽ Calcestruzzo teso o compress			
	M 6	M 8	M10	M12	M16	M20		
50	0,67							
60	0,70	0,67						
70	0,73	0,69	0,67					
80	0,77	0,72	0,69	0,67				
100	0,83	0,78	0,74	0,71	0,67			
125	0,92	0,85	0,80	0,76	0,71	0,67		
150	1,00	0,92	0,86	0,81	0,75	0,70		
180		1,00	0,93	0,88	0,80	0,74		
210			1,00	0,94	0,85	0,78		
240				1,00	0,90	0,82		
300					1,00	0,90		
375						1,00		

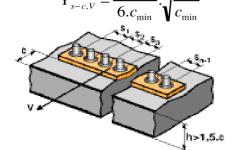
TRAZIONE - INFLUENZA DELLA DISTANZA DAL BORDO SULLA RESISTENZA DEL CALCESTRUZZO

TRAZIONE - INFLUENZA DELL'INTERASSE SULLA RESISTENZA DEL CALCESTRUZZO

$$\Psi_{c,N} = 0.25 + 0.5 \cdot \frac{c}{h_{ef}}$$


 $C_{min} < C < C_{cr,N}$


 $C_{cr,N} = 1,5 h_{ef}$


 $\Psi_{c,N}$ si applica per ogni distanza C influenzi il gruppo di ancoranti

Distanza C				Calo	Fattore di cestruzzo teso	riduzione Ψ _s o compresso
	M 6	M 8	M10	M12	M16	M20
50	0,75	0,66				
60	0,85	0,74	0,67			
70	0,95	0,83	0,74	0,68		
80		0,91	0,81	0,74	0,64	
90		1,00	0,89	0,80	0,69	0,60
100			0,96	0,87	0,74	0,64
120			1,00	1,00	0,84	0,72
150					1,00	0,84
170						0,92
190						1,00

TAGLIO - INFLUENZA DI INTERASSE E DISTANZA DAL BORDO SULLA RESISTENZA DEL CLS

Ancorante isolato									cestruz			· Ψ _{S-C, V} ipresso
C Cmin	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
Ψ _{s-c, ν}	1,00	1,31	1,66	2,02	2,41	2,83	3,26	3,72	4,19	4,69	5,20	5,72

¬ Punto	di fis	saggio	a 2 an		Cal	cestruz	zo tesc	Fattore o o com	, .			
S Cmin	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
1,0	0,67	0,84	1,03	1,22	1,43	1,65	1,88	2,12	2,36	2,62	2,89	3,16
1,5	0,75	0,93	1,12	1,33	1,54	1,77	2,00	2,25	2,50	2,76	3,03	3,31
2,0	0,83	1,02	1,22	1,43	1,65	1,89	2,13	2,38	2,63	2,90	3,18	3,46
2,5	0,92	1,11	1,32	1,54	1,77	2,00	2,25	2,50	2,77	3,04	3,32	3,61
3,0	1,00	1,20	1,42	1,64	1,88	2,12	2,37	2,63	2,90	3,18	3,46	3,76
3,5		1,30	1,52	1,75	1,99	2,24	2,50	2,76	3,04	3,32	3,61	3,91
4,0			1,62	1,86	2,10	2,36	2,62	2,89	3,17	3,46	3,75	4,05
4,5				1,96	2,21	2,47	2,74	3,02	3,31	3,60	3,90	4,20
5,0					2,33	2,59	2,87	3,15	3,44	3,74	4,04	4,35
5,5						2,71	2,99	3,28	3,57	3,88	4,19	4,50
6,0						2,83	3,11	3,41	3,71	4,02	4,33	4,65

¬ Punti di fissaggio a 3 o più ancoranti

$$\Psi_{s-c,V} = \frac{3.c + s_1 + s_2 + s_3 + \dots + s_{n-1}}{3.n.c_{\min}} \cdot \sqrt{\frac{c}{c_{\min}}}$$

In acciaio zincato

Metodo Spit CC (Valori conformi a ETA) per azioni sismiche categoria C1

TRAZIONE in kN

Resistenza a sfilamento

$$N_{Rd,p} = N_{Rd,p}^{O} \cdot f_b$$

0.000000000	πα, μ	π, μ	~			
N ⁰ _{Rd. p C1}		Resisten	za di p	rogetto	a sfilar	nento
Misura			M10	M12	M16	
Categoria C1 - A	ncorante singo	lo				
h _{ef}			70	80	100	
N ⁰ R _{d, p C1} (C20/2	5)		6,4	17,2	24,0	
Categoria C1 - G		anti ⁽¹⁾				
h _{ef}			70	80	100	
N ⁰ R _{d, p, C1} (C20/2	5)		5,4	14,6	20,4	
ν _ν = 1.5						

Resistenza del calcestruzzo

$$N_{Rd,C} = N_{Rd,C}^{O} \cdot f_b \cdot \psi_s \cdot \psi_{c,N}$$

N ⁰ _{Rd. c. C1}	Resistenza di progetto del calcestruzzo								
Misura	M10	M12	M16						
Categoria C1 - Ancorante sin	ngolo								
h _{ef}	70	80	100						
$N^{0}R_{d,c,C1}$ (C20/25)	11,9	14,6	20,4						
Categoria C1 - Gruppo di and	coranti ⁽¹⁾								
h _{ef}	70	80	100						
N ⁰ R _{d,c,C1} (C20/25)	10,5	12,9	18,0						
4 5									

Resistenza dell'acciaio

N _{Rd, s, C1}	Resistenza di progetto dell'acciaio								
Misura	M10	M12	M16						
Categoria C1 - Ancorante singolo	0								
$NR_{d,s}$	30,7	44,7	84,0						

 $[\]gamma_{Ms}$ = 1,5

$$N_{Rd} = min (N_{Rd,p, C1}; N_{Rd,c, C1}; N_{Rd,s, C1})$$

 $\beta_N = N_{Sd} / N_{Rd} \le 1$

Resistenza a rottura del bordo

$$V_{Rd, c} = V_{Rd, c}^{O} \cdot f_{b} \cdot f_{\beta v} \cdot \psi_{S-C, V}$$

V ⁰ _{Rd.c}	Resistenza di progetto a rottura bordo, alla minima distanza dal bordo (C_{\min})								
Misura		M10	M12	M16					
Categoria C1 - Ancorante singolo									
h _{ef}		70	80	100					
C _{min}		70	80	100					
S _{min}		160	200	220					
V ⁰ _{Rd,c, C1} (C20/25)		4,6	6,1	9,7					
Categoria C1 - Gruppo	di ancoranti ⁽¹⁾								
h _{ef}		70	80	100					
C _{min}	·	70	80	100					
S _{min}		160	200	220					
V ⁰ _{Rd,c, C1} (C20/25)		3,9	5,2	8,3					

 $\gamma_{Mc} = 1,5$

Resistenza a scalzamento (pry-out)

$$V_{Rd,cp} = V_{Rd,cp}^{0} \cdot f_{b} \cdot \psi_{S} \cdot \psi_{C,N}$$

ACCOUNT ACCOUNT			,	
V ⁰ _{Rd. cp. C1} Resist	tenza di prog	etto de	l calcest	ruzzo
Misura	M10	M12	M16	
Categoria C1 - Ancorante singolo				
h _{ef}	70	80	100	
V ⁰ R _{d,cp, C1} (C20/25)	23,9	29,2	40,8	
Categoria C1 - Gruppo di ancoran	ti ⁽¹⁾			
h _{ef}	70	80	100	
$N^{0}R_{d,cp,C1}$ (C20/25)	21,1	25,8	36,0	
v15				

Resistenza dell'acciaio (2)

V _{Rd, s, C1}	Resistenza di progetto dell'acciaio			
Misura	M10	M12	M16	
Categoria C1 - Ancorante singolo	0			
V _{Rd,s, C1}	16,2	22,7	48,4	
Categoria C1 - Gruppo di ancora	nti ⁽¹⁾			
V _{Rd,s, C1}	13,7	19,3	41,2	
V _{Ms} = 1,25				

$$V_{Rd} = min (V_{Rd,c, C1}; V_{Rd, cp, C1}; V_{Rd,s, C1})$$

 $B_V = V_{Sd} / V_{Rd} \le 1$

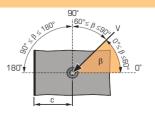
$B_N + B_v \le 1,2$

EFFETTO DELLA RESISTENZA DEL CALCESTRUZZO

LITETTO DELLA RESISTENZA DEL CALCESTROZZO				
Classe del cls	fb	Classe del cls	fb	
C25/30	1,10	C40/50	1,41	
C30/37	1,22	C45/55	1,48	
C35/45	1 34	C50/60	1.55	-

INFLUENZA DELLA DIREZIONE DEL TAGLIO

 Angolo β [°]
 $f_{\beta,\nu}$


 0 - 55
 1,0

 60
 1,1

 70
 1,2

 80
 1,5

 90 - 180
 2,0

5/6

⁽¹⁾ Più di un ancorante del gruppo è sollecitato a trazione

⁽²⁾ Con spazio tra ancorante e foro riempito

In acciaio zincato

6/6

Metodo Spit CC (Valori conformi a ETA) per azioni sismiche categoria C2

TRAZIONE in kN

Resistenza a sfilamento

$$N_{Rd,p} = N_{Rd,p}^{O} \cdot f_b$$

0.0000000000	nα, ρ	nα, ρ	~			
N ⁰ _{Rd. p C2}		Resisten	za di p	rogetto	o a sfila	mento
Misura			M10	M12	M16	
Categoria C2 - Anco	rante singo	olo				
h _{ef}			70	80	100	
$N^{0}R_{d, p C2}$ (C20/25)			2,9	6,8	10,8	
Categoria C2 - Grup	po di ancoi	ranti ⁽¹⁾				
h_{ef}			70	80	100	
N ⁰ R _{d, p, C2} (C20/25)			2,4	5,8	9,2	
v = 1.5						

Resistenza del calcestruzzo

$$N_{Rd,c} = N_{Rd,c}^{O} \cdot f_b \cdot \psi_s \cdot \psi_{c,N}$$

N ⁰ _{Rd. c. C2}	Resistenza di progetto del calcestruzzo			
Misura	M10	M12	M16	
Categoria C2 - Ancorante sing	golo			
h _{ef}	70	80	100	
$N^0R_{d,c,C2}$ (C20/25)	9,5	11,9	16,0	
Categoria C2 - Gruppo di anc	oranti ⁽¹⁾			
h _{ef}	70	80	100	
N ⁰ R _{d,c,C2} (C20/25)	8,4	10,5	14,1	
4.5				

Resistenza dell'acciaio

N _{Rd, s, C2}	Resistenza di progetto dell'acciaio				
Misura	M10	M12	M16		
Categoria C2 - Ancorante singolo)				
NR _{d,s, c2}	7,1	16,1	38,6		
$\gamma_{Ms} = 1,5$					

⁽¹⁾ Più di un ancorante del gruppo è sollecitato a trazione

$$N_{Rd} = min (N_{Rd,p, C1}; N_{Rd,c, C1}; N_{Rd,s, C1})$$

 $\beta_N = N_{Sd} / N_{Rd} \le 1$

Resistenza a rottura del bordo

$$V_{Rd, c} = V_{Rd, c}^{O} \cdot f_{b} \cdot f_{\beta v} \cdot \psi_{S-C, V}$$

V ⁰ _{Rd.c. C2}	Resistenza di progetto a rottura bordo, alla minima distanza dal bordo (C_{\min})			
Misura		M10	M12	M16
Categoria C2 - Ancoran	te singolo			
h _{ef}		70	80	100
C _{min}		65	100	100
S _{min}		50	100	100
V ⁰ _{Rd,c, C2} (C20/25)		4,0	5,3	8,4
Categoria C2 - Gruppo	di ancoranti ⁽¹⁾			
h _{ef}		70	80	100
C _{min}		70	80	100
S _{min}		160	200	220
V ⁰ _{Rd,c, C2} (C20/25)		3,9	5,2	8,3

 $\gamma_{Mc} = 1,5$

Resistenza a scalzamento (pry-out)

$$V_{Rd,cp} = V^{0}_{Rd,cp} \cdot f_{b} \cdot \psi_{S} \cdot \psi_{C,N}$$

Barton and Barton and Barton and	•			
V ⁰ _{Rd. cp. C2}	Resistenza di prog	getto de	l calcest	ruzzo
Misura	M10	M12	M16	
Categoria C2 - Ancorante sir	ngolo			
h _{ef}	70	80	100	
V ⁰ R _{d,cp, C2} (C20/25)	19,0	23,9	32,0	
Categoria C2 - Gruppo di an	coranti ⁽¹⁾			
h _{ef}	70	80	100	
$N^{0}R_{d,cp,C2}$ (C20/25)	16,7	21,1	28,2	
v = 1.5				

 $\gamma_{Mcp} = 1,5$

Resistenza dell'acciaio (2)

V _{Rd, s, C2}	Resistenza di progetto dell'acciaio			
Misura	M10	M12	M16	
Categoria C2 - Ancorante singo	lo			
V _{Rd,s, C2}	13,7	22,7	46,4	
Categoria C2 - Gruppo di ancor	anti (1)			
V _{Rd,s, C2}	11,6	19,3	39,4	
V _{Mc} = 1,25				

$$V_{Rd} = min (V_{Rd,c,C1}; V_{Rd,cp,C1}; V_{Rd,s,C1})$$

 $\beta_V = V_{Sd} / V_{Rd} \le 1$

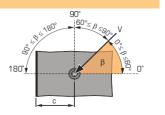
$B_N + B_v \le 1,2$

EFFETTO DELLA RESISTENZA DEL CALCESTRUZZO

LITETTO DELLA RESISTENZA DEL CALCESTROZZO				
Classe del cls	fb	Classe del cls	fb	
C25/30	1,10	C40/50	1,41	
C30/37	1,22	C45/55	1,48	
C35/45	1.34	C50/60	1 55	

INFLUENZA DELLA DIREZIONE DEL TAGLIO

 Angolo β [°]
 f_{β,ν}


 0 - 55
 1,0

 60
 1,1

 70
 1,2

 80
 1,5

 90 - 180
 2,0

⁽²⁾ Con spazio tra ancorante e foro riempito