

EASYTEST - COMBI519 Manuale d'uso

INDICE

1. 1.1. 1.2. Dopo l'uso4 1.3. 1.4. Definizione di categoria di misura (sovratensione)......4 2. 2.1. 2.2. Funzionalità dello strumento.......6 3. PREPARAZIONE ALL'UTILIZZO......7 3.1. 3.2. Alimentazione dello strumento......7 3.3. 4.1. Descrizione dei terminali di misura8 4.2. 4.3. Descrizione del display......9 4.4. 4.5. Videata iniziale9 5. 5.1. 5.1.1. 5.1.2. 5.1.3. 5.1.4. 5.1.5. Data e Ora.....12 5.1.6. Informazioni......12 5.1.7. 5.1.8. 6. AUTO: Sequenza automatica prove (Rat, RCD, MΩ).....14 6.1. 6.1.1. 62 RPE: Continuità dei conduttori di protezione......24 6.3. 6.3.1. 6.3.2. 6.3.3. 6.4. 6.4.1. 6.5. 6.5.1. 6.5.2. 6.5.3. 6.6. RCD: Test su interruttori differenziali 40 6.6.1. 6.6.2. Modo AUTO 6.6.3. 6.6.4. 6.6.5. Modo CCID (sistemi TN – Nazione USA) 48 6.6.6. 6.6.7. 6.7. 6.7.1. 6.7.2. 6.7.3. 6.7.4. 6.7.5.

6.7.6.	Test Ra 🛨 2-fili – Verifica della protezione dai contatti indiretti	66
6.7.7.	Test Ra 🛨 3-fili - Verifica della protezione dai contatti indiretti	68
6.7.8.	Verifica della protezione contro contatti indiretti (sistemi IT)	70
6.7.9.	Verifica della protezione contro contatti indiretti (sistemi TT)	72
6.7.10.	Verifica della protezione contro contatti indiretti (sistemi TN)	74
6.7.11.	Situazioni anomale	76
6.8. L	oZ: Impedenza Linea/loop ad alta risoluzione	79
6.9. 1	,2,3: Senso ciclico e concordanza delle fasi	80
6.9.1.	Situazioni anomale	83
6.10. <i>Δ</i>	V%: Caduta di tensione sulle linee	84
6.10.1.	Situazioni anomale	87
7. MEM	ORIZZAZIONE RISULTATI	90
7.1. S	alvataggio delle misure	90
7.2. R	Richiamo dei dati a display e cancellazione memoria	91
8. COLL	EGAMENTO DELLO STRUMENTO A PC	92
9. MANI	JTENZIONE	93
9.1. 0	Generalità.	
9.2 5	Sostituzione batterie	93
93 P	Pulizia dello strumento	93
94 F	ine vita	93
10 SPEC		Q1
	aratteristiche tecniche	
10.1. C	lormative di riferimento	
10.2.	aratteristiche generali	08
10.0. C	mbiente	
10.4.1	Condizioni ambientali di utilizzo	98
10.5 A		98
	STEN7A	aa
11.1.000	andizioni di garanzia	00
11.1. C	ssitonza	
		100
12. AFFE	INDIGI TEORIGHE	100
12.1. 0	continuita dei conduitori di protezione	100
	Migura Indiaa di Delarizzaziona (DI)	101
12.2.1.	Rapporto di Assorbimento Dielettrico (DAR)	102
12.2.2.	arifica della separazione dei circuiti	102
12.3. V	erinda della separazione dei chediti	105
12. 4 . 1	(arifica del notere di interruzione della protezione	105
12.5. V	anifica dei polere di interruzione della protezione	100
12.0. V	onica protezione contro contatti indiretti nel sistemi na	100
12.7. 1	Countra The solution in the solution of the solution in the solution in the solution in the solution of the solution in the solution in the solution is the solution of the solution in the solution is the solution is the solution in the solution is the solution is the solution is the solution in the solution is the so	1109
12.0. V	chilica protezione contro contatti indiretti nei sistemi IT	110
12.9. V	ennua protezione contro contatti indiretti nel Sistemi II	110
12.10. V	ennica coordinamento delle protezioni L-L, L-N e L-PE	
IZ.II. V		. 114

1. PRECAUZIONI E MISURE DI SICUREZZA

Lo strumento è stato progettato in conformità alle direttive IEC/EN61557 e IEC/EN61010, relative agli strumenti di misura elettronici. Prima e durante l'esecuzione delle misure attenersi scrupolosamente alle seguenti indicazioni:

- Non effettuare misure di tensione o corrente in ambienti umidi.
- Non effettuare misure in presenza di gas o materiali esplosivi, combustibili o in ambienti polverosi.
- Evitare contatti con il circuito in esame se non si stanno effettuando misure.
- Evitare contatti con parti metalliche esposte, con terminali di misura inutilizzati, ecc.
- Non effettuare alcuna misura qualora si riscontrino anomalie nello strumento come, deformazioni, rotture, fuoriuscite di sostanze, assenza di visualizzazione, ecc
- Prestare particolare attenzione quando si effettuano misure di tensioni superiori a 25V in ambienti particolari (cantieri, piscine, ...) e 50V in ambienti ordinari in quanto si è in presenza di rischio di shock elettrici.
- Utilizzare solo gli accessori originali

Nel presente manuale sono utilizzati i seguenti simboli:

Attenzione: attenersi alle istruzioni riportate nel manuale; un uso improprio potrebbe causare danni allo strumento, ai suoi componenti o creare situazioni pericolose per l'operatore.

Pericolo alta tensione: rischi di shock elettrici.

Doppio isolamento

Riferimento di terra

Il simbolo indica che lo strumento non deve essere utilizzato in sistemi di distribuzione con tensione superiore a 460V

1.1. ISTRUZIONI PRELIMINARI

- Questo strumento è stato progettato per l'utilizzo in condizioni ambientali specificate al § 10.4.1 Non operare in condizioni ambientali differenti.
- Può essere utilizzato per misure e prove di verifica della sicurezza su impianti elettrici. Non operare su circuiti che superino i limiti specificati al § 10.1
- La invitiamo a seguire le normali regole di sicurezza orientate a proteggerLa contro correnti pericolose e proteggere lo strumento contro un utilizzo errato.
- Solo gli accessori forniti a corredo dello strumento garantiscono gli standard di sicurezza. Essi devono essere in buone condizioni e sostituiti, se necessario, con modelli identici.
- Controllare che le batterie siano inserite correttamente.
- Prima di collegare i puntali al circuito in esame, controllare che sia stata selezionata la funzione desiderata

1.2. DURANTE L'USO

La preghiamo di leggere attentamente le raccomandazioni e le istruzioni seguenti:

ATTENZIONE

La mancata osservazione delle avvertenze e/o istruzioni può danneggiare lo strumento e/o i suoi componenti o essere fonte di pericolo per l'operatore.

- Prima di cambiare funzione scollegare i puntali di misura dal circuito in esame.
- Quando lo strumento è connesso al circuito in esame non toccare mai alcun terminale, anche se inutilizzato
- Evitare la misura di resistenza in presenza di tensioni esterne; anche se lo strumento è protetto una tensione eccessiva potrebbe causarne danneggiamenti

1.3. DOPO L'USO

Quando le misure sono terminate, spegnere lo strumento mantenendo premuto il tasto **ON/OFF** per alcuni secondi. Se si prevede di non utilizzare lo strumento per un lungo periodo rimuovere le batterie ed attenersi a quanto specificato nel § 3.3

1.4. DEFINIZIONE DI CATEGORIA DI MISURA (SOVRATENSIONE)

La norma "IEC/EN61010-1: Prescrizioni di sicurezza per apparecchi elettrici di misura, controllo e per utilizzo in laboratorio, Parte 1: Prescrizioni generali", definisce cosa si intenda per categoria di misura, comunemente chiamata categoria di sovratensione. Al § 6.7.4: Circuiti di misura, essa recita: i circuiti sono suddivisi nelle seguenti categorie di misura:

- La **Categoria di misura IV** serve per le misure effettuate su una sorgente di un'installazione a bassa tensione. Esempi sono costituiti da contatori elettrici e da misure sui dispositivi primari di protezione dalle sovracorrenti e sulle unità di regolazione dell'ondulazione.
- La **Categoria di misura III** serve per le misure effettuate in installazioni all'interno di edifici.

Esempi sono costituiti da misure su pannelli di distribuzione, disgiuntori, cablaggi, compresi i cavi, le barre, le scatole di giunzione, gli interruttori, le prese di installazioni fisse e gli apparecchi destinati all'impiego industriale e altre apparecchiature, per esempio i motori fissi con collegamento ad impianto fisso.

- La **Categoria di misura II** serve per le misure effettuate su circuiti collegati direttamente all'installazione a bassa tensione. Esempi sono costituiti da misure su apparecchiature per uso domestico, utensili portatili ed apparecchi similari.
- La **Categoria di misura I** serve per le misure effettuate su circuiti non collegati direttamente alla RETE DI DISTRIBUZIONE. Esempi sono costituiti da misure su non derivati dalla RETE e derivati dalla RETE ma con protezione particolare (interna). In quest'ultimo caso le sollecitazioni da transitori sono variabili, per questo motivo (OMISSIS) si richiede che l'utente conosca la capacità di tenuta ai transitori dell'apparecchiatura

2. DESCRIZIONE GENERALE

2.1. INTRODUZIONE

Questo manuale si riferisce ai modelli **EASYTEST** e **COMBI519**. Salvo notazione esplicita, per "strumento" è inteso il modello COMBI519. Le caratteristiche dei modelli sono elencate nella seguente Tabella 1:

Nome	Descrizione misura	EASYTEST	COMBI519
AUTO	Misura AUTO di Ra ۖ♀, RCD, MΩ in sequenza	✓	\checkmark
DMM	Funzione multimetro (Tensione AC, Frequenza	✓	✓
RPE	Prova di continuità dei conduttori di terra, di protezione ed equipotenziali con 200mA	✓	~
LoΩ	Prova di continuità dei conduttori di terra, di protezione ed equipotenziali con 10A con relativo accessorio opzionale EQUITEST	✓	✓
MΩ	Misura della resistenza di isolamento (modi L-PE, N-PE, L-N)	✓	✓
RCD	Test su differenziali scatolato AC, A/F, B/B+ DD e CCID Generali e Selettivi fino a 1000mA	√ (A/F, AC)	✓ (A/F, AC, B/B+, DD, CCID)
LOOP	Misure della Resistenza Globale di Terra (Ra+) e misura della impedenza di linea e dell'anello di guasto (Loop P-N, P-P, P-PE) con calcolo della corrente di cortocircuito presunta	✓	~
LoZ	Misure della impedenza di linea e dell'anello di guasto (Loop P-N, P-P, P-PE) ad alta risoluzione con calcolo della corrente di cortocircuito presunta (con accessorio opzionale IMP57)		✓
1,2,3	Rilevazione del senso ciclico e concordanza delle fasi a 1 terminale	✓	✓
ΔV%	Misura della caduta di tensione percentuale su linee di distribuzione	\checkmark	~

Tabella 1: Descrizione del modelli

2.2. FUNZIONALITÀ DELLO STRUMENTO

Lo strumento può eseguire le seguenti prove:

- RPE Continuità dei conduttori di terra, di protezione ed equipotenziali con corrente di prova superiore a 200mA e tensione a vuoto compresa tra 4 e 24V
- MΩ Misura della resistenza di isolamento con tensione continua di prova 50V, 100V, 250V, 500V o 1000V DC
- LOOP Misura dell'impedenza di Linea/Loop P-N, P-P, P-E con calcolo della corrente di cortocircuito presunta, resistenza globale di terra senza intervento RCD (RA+), verifica del potere di interruzione di protezioni magnetotermiche (MCB) e fusibili, verifica delle protezioni in caso di contatti indiretti con collegamento a 2 fili e 3 fili
- LoZ Misura dell'impedenza di Linea/Loop P-N, P-P, P-E con calcolo della corrente di cortocircuito presunta anche con risoluzione elevata (0.1mΩ) (con accessorio opzionale IMP57)
- $\Delta V\%$ Misura della caduta di tensione percentuale sulle linee
- LoΩ Continuità dei conduttori di terra, di protezione ed equipotenziali con corrente di prova superiore a 10A (con accessorio opzionale EQUITEST)
- RCD Test su differenziali di tipo scatolato (Standard STD) Generali (G), e Selettivi (S) di tipo A/F (∧∧/w), AC (∧), B/B+ (==/==+), DD e CCID (∧, ==) (nazione USA) dei seguenti parametri: tempo di intervento, corrente di intervento, tensione di contatto
- AUTO Misura in sequenza automatica delle funzioni RA⁺, RCD, MΩ con collegamento a 3 fili
- **1,2,3** Indicazione del senso ciclico delle fasi con metodo a 1 terminale
- DMM Funzione multimetro per misura tensione Fase-Neutro, Fase-Fase o Fase-PE e frequenza

3. PREPARAZIONE ALL'UTILIZZO

3.1. CONTROLLI INIZIALI

Lo strumento, prima di essere spedito, è stato controllato dal punto di vista elettrico e meccanico. Sono state prese tutte le precauzioni possibili affinché lo strumento potesse essere consegnato senza danni. Tuttavia si consiglia di controllarlo per accertare eventuali danni subiti durante il trasporto. Qualora si dovessero riscontrare anomalie contattare immediatamente il rivenditore. Si consiglia inoltre di controllare che l'imballaggio contenga tutte le parti indicate al § 10.5. In caso di discrepanze contattare il rivenditore. Qualora fosse necessario restituire lo strumento si prega di seguire le istruzioni riportate al § 11.

3.2. ALIMENTAZIONE DELLO STRUMENTO

Lo strumento è alimentato tramite 6x1.5V batterie alcaline tipo AA LR06 fornite in dotazione. Il simbolo "" indica il livello di carica delle batterie. Per la sostituzione delle batterie vedere il § 9.2.

Lo strumento è in grado di mantenere i dati memorizzati anche in assenza di batterie.

Lo strumento dispone di una funzione di autospegnimento (disabilitabile) dopo 10 minuti di non utilizzo.

3.3. CONSERVAZIONE

Per garantire misure precise, dopo un lungo periodo di permanenza in magazzino in condizioni ambientali estreme, attendere che lo strumento ritorni alle condizioni normali (vedere § 10.4.1).

4. NOMENCLATURA

4.1. DESCRIZIONE DELLO STRUMENTO

ATTENZIONE

Lo strumento esegue il controllo della <u>tensione su PE</u> confrontando la tensione sull'ingresso B4 e il potenziale di terra indotto sulle parti laterali dello stesso per mezzo della mano dell'operatore pertanto al fine di eseguire un controllo corretto della tensione su PE <u>è necessario tenere impugnato lo</u> strumento nella parte laterale destra o nella parte laterale sinistra

4.2. DESCRIZIONE DEI TERMINALI DI MISURA

LEGENDA:

- 1. Barriera paramano
- 2. Zona di sicurezza

Fig. 3: Descrizione dei terminali di misura

4.3. DESCRIZIONE DELLA TASTIERA

La tastiera è costituita dai seguenti tasti:

Tasto ON/OFF per accendere e spegnere lo strumento

Tasto **ESC** per uscire dal menu selezionato senza confermare le modifiche Tasto **MENU** per tornare al menu generale dello strumento in ogni momento

Tasti ◀ ▲ ▶ ▼ per spostare il cursore all'interno delle varie schermate allo scopo di selezionare i parametri di programmazione

Tasto **SAVE/ENTER** per il salvataggio dei parametric interni (SAVE) e per selezionare le funzioni desiderate dal menu (ENTER)

Tasto **GO** per avviare la misurazione Tasto **STOP** per terminare la misurazione

Tasto **HELP** per accedere all'help on line visualizzando, per ciascuna funzione selezionata, le possibili connessioni tra strumento ed impianto Tasto ***** (**pressione continua**) per la regolazione della retroilluminazione

4.4. DESCRIZIONE DEL DISPLAY

Il display è un modulo COG LCD, 128x128punti. La prima linea RPE 15/10 - 18:04del display indica il tipo di misura attiva, la data/ora e l'indicazione sul livello di carica della batteria. R = - - - Ω

All'accensione dello strumento viene visualizzata per qualche secondo la videata iniziale. In essa sono visualizzati:

- Il modello dello strumento
- Il costruttore dello strumento
- Il numero di serie dello strumento (SN:)
- La versione del Firmware dei due microprocessori interni allo strumento (FW e HW)
- La data di ultima calibrazione dello strumento

COMBI519 HT ITALIA SN: 22100100 HW: 2.00 FW: 2.09

Itest = - - mA

Misura...

0.12Ω

> \$<

2.00Ω

Lim

STD MODO

Data calibrazione: 15/01/2022

Dopo alcuni istanti lo strumento passa al menu generale

5. MENU GENERALE

La pressione del tasto HOME, in gualungue condizione si trovi lo strumento, consente di tornare al menu generale da cui è possibile impostare i parametri interni e selezionare la misura desiderata.

MENU	15/10 – 18:04 MENU 15/10 – 18:04	
AUTO	Raŧ, RCD, MΩ LoZ : Zalta precisio	ne
DMM	Multimetro. 1,2,3 : Seq. Fasi	
RPE	Continuità $\Delta V\%$: Caduta Tens.	
LoΩ	RPE.Test 10A SET : Impostazioni	
MΩ	Isolamento MEM : Dati memorizza	ati
RCD	Differenziali PC : Trasferimento	dati
LOOP	ZLinea, Ω ≑ , Isc	
	▼ ▼	

Selezionare spostando il cursore una delle misure presenti e confermare con il tasto **ENTER**. Lo strumento mostra la misura desiderata a display.

5.1. SET - IMPOSTAZIONI STRUMENTO

Spostare il cursore su SET confermare con ENTER . Lo	usando i tas strumento mo	sti freccia stra la vi	(▲ ,▼) deata c	e he	SET 15/10 – 18:04
permette l'accesso alle impos	stazioni interne	e.			Lingua
Le impostazioni vengono mantenute anche dopo lo spegnimento dello strumento.		lo	Sistema elettrico Impostazioni generali Data e Ora Informazioni Nome Operatore		
5.1.1. Lingua					

Spostare il cursore su Lingua usando i tasti freccia (▲,▼) e SET confermare con ENTER. Lo strumento mostra la videata che permette l'impostazione della lingua di sistema.

Selezionare l'opzione desiderata usando i tasti freccia (\blacktriangle, ∇) . Premere il tasto ENTER per confermare o il tasto ESC per tornare alla videata precedente.

5.1.2. Paese

Spostare il cursore su **Paese** usando i tasti freccia $(\blacktriangle, \blacktriangledown)$ e sconfermare con **ENTER** per la selezione della nazione di riferimento. Questa scelta ha effetto sulle misure di LOOP, e Ra \ddagger . Selezionare l'opzione desiderata usando i tasti freccia $(\blacktriangle, \blacktriangledown)$. Premere il tasto **ENTER** per confermare o il tasto **ESC** per tornare alla videata precedente.

5.1.3. Sistema elettrico

Spostare il cursore su **Sistema elettrico** usando i tasti freccia <u>SET</u> (▲,▼) e confermare con **ENTER**. I seguenti parametri sono impostabili sullo strumento:

- Vnom → la tensione nominale Fase-Neutro o Fase-PE (110V,115V,120V,127V,133V,220V,230V,240V) da usare nel calcolo della corrente di cortocircuito presunta nella misura di LOOP/RCD per sistemi Trifase L1,L2,L3,N (sistema L-N-PE) oppure la tensione nominale tra Fase-Fase nella misura di LOOP/RCD per sistemi Bifase L1,L2,PE (sistema L-L-PE)
- Frequenza \rightarrow la frequenza di sistema (50Hz, 60Hz)
- Sistema -> il tipo di collegamento nelle funzioni RCD e LOOP (L-N-PE o L-L-PE)
- > **Distribuzione** \rightarrow il tipo di sistema elettrico (TT, TN o IT)
- ▶ **V.Contatto** \rightarrow limite sulla tensione di contatto (25V, 50V)
- > I RCD \rightarrow il tipo di visualizzazione della corrente di intervento durante la prova a Rampa (Reale, Nom). Con l'opzione "Nom" lo strumento visualizza il valore della corrente di intervento normalizzata (cioè riferita alla corrente nominale. Esempio: per RCD Tipo A con Idn=30mA, il valore efficace della corrente di intervento normalizzata può arrivare a 30mA. Con l'opzione "Reale" lo strumento visualizza il valore efficace della corrente di intervento applicando i coefficienti indicati nelle normative IEC/EN61008 e IEC/EN61009 (1.414 per RCD tipo A/F, 1 RCD tipo AC, per RCD tipo per 2 B/B+) Esempio: per RCD Tipo A/F con Idn=30mA, il valore della corrente di può arrivare a 30mA * 1.414 = 42mA
- > 30mAx5 → Selezionando l'opzione "RCD" lo strumento esegue la misura del tempo di intervento con tutti i moltiplicatori nelle normali condizioni. Selezionando l'opzione "RCCB", <u>solo per RCD da 30mA</u>, lo strumento esegue la misura del tempo di intervento con <u>moltiplicatore x5</u> su RCD di tipo AC con corrente di prova 250mA e su RCD di tipo A/F con corrente di prova 350mA
- Fattore Isc → (solo per paese Norvegia) possibilità di impostare il valore del fattore ISC (0.01 ÷ 1.00) da usare nel calcolo della corrente di cortocircuito presunta

Selezionare l'opzione desiderata usando i tasti freccia $(\blacktriangle, \triangledown)$. Premere il tasto **ENTER** per confermare o il tasto **ESC** per tornare alla videata precedente.

SET	15/10 – 18	3:04	1
Europa			
Extra E	uropa		
Germar	nia		
Regno	Unito		
USA	Id		
Australia	a/Nuova	Zelanda	

15/10 - 18:04

: < EU >

19

◀ 10 🕨

◀ 14 🕨

◀ 17. 🕨

: ┥ 38 🕨

5.1.4. Impostazioni generali

Spostare il cursore su **impostazioni generali** usando i tasti freccia $(\blacktriangle, \bigtriangledown)$ e confermare con **ENTER**. Lo strumento mostra la videata in cui è possibile abilitare/disabilitare l'auto power off, il suono associate alla pressione dei tasti e la funzione di Auto Start (avvio automatico) nelle funzioni RCD e LOOP (vedere § 5.1.5).

Selezionare l'opzione desiderata usando i tasti freccia $(\blacktriangle, \triangledown)$. Premere il tasto **ENTER** per confermare o il tasto **ESC** per tornare alla videata precedente

5.1.5. Funzione Auto Start

La funzione AutoStart permette di attivare automaticamente le misure RCD e LOOP. <u>Per</u> <u>eseguire correttamente la funzione AutoStart è NECESSARIO eseguire il PRIMO test</u> <u>premendo il tasto GO/STOP sullo strumento o il tasto START sul puntale remoto</u>. Al termine del primo test, non appena lo strumento riconosce una tensione stabile sugli ingressi all'interno del campo di misura, esegue il test senza la necessità di premere il tasto GO/STOP o il tasto START sul puntale remoto.

5.1.6. Data e Ora

Spostare il cursore su **Data e Ora** usando i tasti freccia (▲,▼) e confermare con **ENTER.** Successivamente la videata a lato è mostrata a display in modo da impostare la data/ora di sistema. Selezionare il campo "Formato" per impostare il sistema Europeo (formato "DD/MM/YY, hh:mm" **EU**) oppure Americano (formato "MM/DD/YY hh:mm" **USA**)

Selezionare l'opzione desiderata usando i tasti freccia $(\blacktriangle, \bigtriangledown)$ e $(\triangleleft, \blacktriangleright)$. Premere il tasto **ENTER** per confermare o il tasto **ESC** per tornare alla videata precedente.

5.1.7. Informazioni

Spostare il cursore su Informazioni usando i tasti freccia	SET 15/10 – 18:04
(\blacktriangle, ∇) e confermare con ENTER . Successivamente la	COMBI519
videata iniziale a lato è mostrata a display	HT ITALIA
Premeree ESC per tornare al menu generale	SN: 22100100
	HW: 2.00
	FW: 2.09
	Data calibrazione:
	15/01/2022

5.1.8. Nome operatore

Questa opzione consente di includere il nome dell'operatore che esegue le misure con lo strumento (**max 12 caratteri**). Tale nome sarà incluso nei report creati con uso del software di gestione.

1.	Usare i tasti freccia ◀ o ► per spostare il cursore sul	SAVE 15/10 – 18:04
	carattere selezionare e premere il tasto SAVE/ENTER	Tastiera
	per l'inserimento	
2.	Muovere il cursore nella posizione "CANC" e premere il	OPERATORE_
	tasto SAVE/ENTER per cancellare il carattere	0 1 2 3 4 5 6 7 8 9 0 () %
	selezionato	Q W E R T Y U I O P <=> #
3.	Muovere il cursore nella posizione "FINE" e premere il	A S D F G H J K L + - * / &
	tasto SAVE/ENTER per confermare il nome scritto e	Z X C V B N M . , ; : ! ? _
	tornare alla videata precedente.	Ä Ö Ü ß µ Ñ Ç Á Í Ó Ú Ü ¿ ¡
		Á È É Ù Ç Ä Ë Ï Ö <u>Ü Æ</u> ØÅ
		CANC FINE

6. ISTRUZIONI OPERATIVE

6.1. AUTO: SEQUENZA AUTOMATICA PROVE (RA \ddagger , RCD, M Ω)

Questa funzione consente l'esecuzione in sequenza automatica delle seguenti misure:

- Resistenza globale di terra senza intervento RCD (Ra+)
- Tempo e corrente di intervento degli interruttori differenziali scatolati Generali tipo A/F (\lambda \lambda \lambd
- Resistenza di isolamento con tensione di prova 50,100,250,500,1000VDC

ATTENZIONE

Alcune combinazioni dei parametri di prova potrebbero essere non disponibili in accordo alle specifiche tecniche dello strumento e le tabelle RCD (vedere § 10.1 - Le celle vuote delle tabelle RCD indicano situazioni non disponibili)

ATTENZIONE

La verifica del tempo di intervento di un interruttore differenziale comporta l'intervento della protezione stessa. Verificare pertanto che a valle della protezione differenziale in esame NON siano allacciate utenze o carichi che possano risentire dalla messa fuori servizio dell'impianto.

Scollegare tutti i carichi allacciati a valle dell'interruttore differenziale in quanto potrebbero introdurre correnti di dispersione aggiuntive a quelle fatte circolare dallo strumento invalidando così i risultati della prova.

Fig. 4: Collegamento in sistema Monofase L-N-PE tramite spina shuko

Fig. 5: Collegamento in sistema Monofase L-N-PE con cavi singoli e puntale remoto

Fig. 7: Collegamento in sistema Bifase L-L-PE con cavi singoli e puntale remoto

<u>Sistemi TN</u>

 Premere il tasto MENU, muovere il cursore su AUTO tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento mostra a display una videata come quella a lato in caso di sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni indicate cambiano in VL1-PE e VL1-L2. Selezionare la nazione di riferimento (vedere § 5.1.2) , l'opzione "TN" "25 o 50V", "50Hz o 60Hz" e la tensione di riferimento nelle impostazioni generali dello strumento (vedere § 5.1.3)

)	AUTO 15/10 – 18:04			
	ΤN			> ¢ <
2 2	lsc=	- A	Z L - N =	Ω
r	lfc=	- A 2	ZL-PE=	=Ω
	Trcd= FREQ= VL-PE	ms =0.00H =0V \	Ircd= z Ut= /L-N=0	m A - V V
	30mA	\sim	500V	1.00MΩ
	l∆n	Tipo	Vtest	Lim

- Usare I tasti freccia ◀, ► per selezionare il parametro da modificare e i tasti freccia ▲, ▼ per modificare il valore del parametro
 - I∆n → II tasto virtuale permette l'impostazione del valore nominale della corrente di intervento dell'RCD tra I valori: 6mA, 10mA, 30mA

 - ➤ Vtest → Questo tasto permette l'impostazione della tensione di prova DC generate durante la prova di isolamento. I seguenti valori sono disponibili: 50V, 100V, 250V, 500V, 1000V
 - Lim → Questo tasto permette l'impostazione della soglia minima in modo da considerare corretta la misura di isolamento. I seguenti valori sono disponibili: 0.05MΩ, 0.10MΩ, 0.23MΩ, 0.25MΩ, 0.50MΩ, 1.00MΩ, 100MΩ

ATTENZIONE

- Assicurarsi di selezionare il valore corretto della corrente di intervento dell'RCD. Selezionando un valore maggiore di quella nominale del dispositivo in prova, l'RCD sarebbe testato ad una corrente maggiore di quella corretta rendendo non attendibile il risultato
- Il simbolo "▶ø◄" indica che i cavi di misura o il cavo con spina Shuko sono stati calibrati nella sezione LOOP (vedere § 6.7.2). La funzione AUTO è riferita a questo valore
- 3. Inserire i connettori verde, blu e nero del cavo shuko a tre terminali nei corrispondenti terminali di ingresso dello strumento B1, B3 e B4. In alternativa utilizzare i cavi singoli ed inserire all'estremità dei cavi rimasta libera i corrispondenti coccodrilli. Eventualmente utilizzare il puntale remoto inserendone il connettore multipolare nel terminale di ingresso B1. Connettere la spina shuko, i coccodrilli od il puntale remoto alla rete elettrica in accordo alle Fig. 4, Fig. 5, Fig. 6 o Fig. 7
- 4. Notare la presenza dei valori di tensione corretti tra L-N e AUTO 15/10 18:04
 L-PE come mostrato nella videata a fianco
 TN ≥ φ<

5. Premere il tasto **GO/STOP** oppure il tasto **START** sul puntale remoto per attivare la sequenza di prove

ATTENZIONE

Il messaggio "**Misura...**" appare a display ad indicare che lo strumento sta eseguendo la misura. Durante tutta questa fase non scollegare i terminali di misura dello strumento dall'impianto in esame

In caso di risultato **positivo** del test $Ra \ddagger (Z_{L-N} e Z_{L-PE} < 199\Omega)$ lo strumento procede con l'esecuzione della misura del tempo e della corrente di intervento dell'RCD

а	AUTO 15/10 – 18:04
ori	TN > φ <
	Isc=1437A ZL-N= 0.16Ω
Ϊι- la	Ifc=1277A ZL-PE=0.18Ω Trcd=ms Ircd=mA FREQ=50.00Hz Ut=V VL-PE=231V VL-N=232V
	Misura

Isc=--- A

lfc=--- A

30mA

l∆n

 $ZL-N=\cdots \Omega$

 $ZL-PE=---\Omega$

500V

Vtest

1.00MΩ

Lim

Trcd=---ms Ircd=---mA FREQ=50.00Hz Ut=---V VL-PE=231V VL-N=232V

Tipo

30mA	\sim	500V	1.00MΩ
l∆n	Tipo	Vtest	Lim

7.	Il test RCD è avviato e la videata a lato è mostrata a display. I valori della corrente e del tempo di intervento sono mostrati a display. In caso di risultato positivo del test (valori di Trcd e Ircd coerenti con quelli indicati nel § 12.4) lo strumento procede con l'esecuzione della misura di isolamento tra i conduttori L-PE, L-N e N-PE	AUTO 15/10 - 18:04 TN >φ< Isc=1437A ZL-N=0.16Ω Ifc=1277A ZL-PE=0.18Ω Trcd=25ms Ircd=27.0mA FREQ=50.00Hz Ut=1.5V VL-PE=231V VL-N=232V Misura
		30mA 500V 1.00MΩ IΔn Tipo Vtest Lim
8.	La misura di isolamento si attiva e la videata a lato è mostrata a display. I valori delle RL-N, RL-PE e RN-PE sono mostrati a display. In caso di risultato positivo del test (resistenza di isolamento > soglia minima impostata) lo strumento fornisce il messaggio " OK " ad indicare l'esito globale del test come mostrato nella videata a lato	AUTO 15/10 - 18:04 TN ▶♦<
	Premere i tasti (◀, ►) per visualizzare I valori presenti nella seconda pagina disponibile	30mA ✓ 500V 1.00MΩ ΙΔn Tipo Vtest Lim
9.	In caso di esito negativo del test Ra [‡] (Z _{L-N} e/o Z _{L-PE} >199Ω), il test auto è automaticamente bloccato e il messaggio "NO OK" è mostrato a display come nella videata a lato.	AUTO 15/10 - 18:04 TN >Φ<
10.	In caso di esito negativo del test RCD (Trcd >300ms o Ircd > 33.0mA) il test auto è automaticamente bloccato e il messaggio "NO OK" è mostrato a display come nella videata a lato.	AUTO 15/10 - 18:04 TN >Φ<

In caso di esito negativo del test Isolamento (resistenza di isolamento < soglia minima impostata) il test auto è automaticamente bloccato e il messaggio "NO OK" è mostrato a display come nella videata a lato

a	AUTO	15/10 – 18:04				
è	ΤN			>		
è	RL-N RL-PE= RN-PE FREQ= VL-PE	> 9 9 9 M = 0 . 0 3 M > 9 9 9 M = 5 0 . 0 0 I = 0 V	Ω Vt= Ω Vt= Ω Vt= Hz Ut= VL-	523V 57V 522V 1.5V N=0V		
		NO	OK 🕨			
		-				
	30mA	\sim	500V	1.00MΩ		
	l∆n	Tipo	Vtest	Lim		

12. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

<u>Sistemi TT</u>

 Premere il tasto MENU, muovere il cursore su AUTO tramite i tasti freccia (▲, ▼) e confermare con ENTER. Successivamente lo strumento mostra a display una videata come quella a lato in caso di sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni indicate cambiano in VL1-PE e VL1-L2. Selezionare la nazione di riferimento (vedere § 5.1.2), l'opzione "TT" "25 o 50V", "50Hz o 60Hz" e la tensione di riferimento nelle impostazioni generali dello strumento (vedere § 5.1.3)

		45/40	40.04	
'	AUTO	15/10	- 18:04	
	ΤT			> \$ <
)	R A =	- Ω	U t = -	· V
	Trcd=	ms	lrcd=·	m A
	FREQ= VL-PE	=0.00H =0V \	z / L - N = 0	V
	30mA	\sim	500V	1.00MΩ
	lΔn	Tipo	Vtest	Lim

- Usare I tasti freccia ◀, ► per selezionare il parametro da modificare e i tasti freccia ▲, ▼ per modificare il valore del parametro
 - I∆n → II tasto virtuale permette l'impostazione del valore nominale della corrente di intervento dell'RCD tra I valori: 6mA, 10mA, 30mA
 - > Tipo → II tasto virtuale permette la selezione del tipo di RCD tra le opzioni: A/F ($\land\land$ /\W), AC (\checkmark) o B/B+ (==/==+)
 - ➤ Vtest → Questo tasto permette l'impostazione della tensione di prova DC generate durante la prova di isolamento. I seguenti valori sono disponibili: 50V, 100V, 250V, 500V, 1000V
 - Lim → Questo tasto permette l'impostazione della soglia minima in modo da considerare corretta la misura di isolamento. I seguenti valori sono disponibili: 0.05MΩ, 0.10MΩ, 0.23MΩ, 0.25MΩ, 0.50MΩ, 1.00MΩ, 100MΩ

ATTENZIONE

- Assicurarsi di selezionare il valore corretto della corrente di intervento dell'RCD. Selezionando un valore maggiore di quella nominale del dispositivo in prova, l'RCD sarebbe testato ad una corrente maggiore di quella corretta rendendo non attendibile il risultato
- Il simbolo "►ø◄" indica che i cavi di misura o il cavo con spina Shuko sono stati calibrati nella sezione LOOP (vedere § 6.7.2). La funzione AUTO è riferita a questo valore

- 3. Inserire i connettori verde, blu e nero del cavo shuko a tre terminali nei corrispondenti terminali di ingresso dello strumento B1, B3 e B4. In alternativa utilizzare i cavi singoli ed inserire all'estremità dei cavi rimasta libera i corrispondenti coccodrilli. Eventualmente utilizzare il puntale remoto inserendone il connettore multipolare nel terminale di ingresso B1. Connettere la spina shuko, i coccodrilli od il puntale remoto alla rete elettrica in accordo alle Fig. 4, Fig. 5 Fig. 6 o Fig. 7
- 4. Notare la presenza dei valori di tensione corretti tra L-N e AUTO 15/10 18:04 L-PE come mostrato nella videata a fianco

С	AUTO	13/10	- 10.04	
	ΤT			>
	R A =	- Ω	U t = -	V
	Trcd=	ms	lrcd=-	m A
	FREQ= VL-PE	= 5 0 . 0 0 H = 2 3 1 V	HzUt=- VL-N=	V 232V
	30mA	\sim	500V	1.00MΩ
	l∆n	Tipo	Vtest	Lim

5. Premere il tasto **GO/STOP** oppure il tasto **START** sul puntale remoto per attivare la sequenza di prove.

7.

Il messaggio "**Misura...**" appare a display ad indicare che lo strumento sta eseguendo la misura. Durante tutta questa fase non scollegare i terminali di misura dello strumento dall'impianto in esame

In caso di risultato **positivo** del test **Ra**⁺ (vedere § 12.8) lo strumento procede con l'esecuzione della misura del tempo e della corrente di intervento dell'RCD

а	AUTO 15/10 – 18:04						
ri	ΤT			>			
11	RA=48	8.8 Ω	Ut=	=1.5 V			
•	Trcd=	ms	lrcd=-	m A			
り 計	FREQ= VL-PE	= 5 0 . 0 0 H = 2 3 1 V	Hz VL-N=	232V			
		Mis	ura				
	30mA	\sim	500V	1.00MΩ			
	lΔn	Tipo	Vtest	Lim			

 II test RCD è avviato e la videata a lato è mostrata a display. I valori della corrente e del tempo di intervento sono mostrati a display.
 AUTO 15/10-18:04
 IT

 In caso di risultato positivo del test (valori di Trcd e Ircd coerenti con quelli indicati nel § 12.4) lo strumento procede con l'esecuzione della misura di isolamento tra i conduttori L-PE, L-N e N-PE
 Miauro

Misura						
30mA	\sim	500V	1.00MΩ			
l∆n	Tipo	Vtest	Lim			

IT - 19

8.	La misura di isolamento si attiva e la videata a lato è mostrata a display. I valori delle RL-N, RL-PE e RN-PE sono mostrati a display. In caso di risultato positivo del test (resistenza di isolamento > soglia minima impostata) lo strumento fornisce il messaggio " OK " ad indicare l'esito globale del test come mostrato nella videata a lato	AUTO 15/10 - 18:04 TT ▶ φ < RL-N >999MΩ Vt= 523V RL-PE >999MΩ Vt= 524V RN-PE >999MΩ Vt=522V FREQ=50.00Hz VL-N=0V
	Premere i tasti (◀, ►) per visualizzare I valori presenti nella seconda pagina disponibile	30mA √ 500V 1.00MΩ ΙΔn Tipo Vtest Lim
9.	In caso di esito negativo del test Ra (vedere § 12.8), il test auto è automaticamente bloccato e il messaggio " NO OK " è mostrato a display come nella videata a lato	AUTO $15/10 - 18:04$ TT $\Rightarrow \phi <$ RA=1824 Ω Ut=54.7 V Trcd=ms Ircd=mA FREQ=50.00Hz VL-N=232V VL-PE=231V VL-N=232V 30mA $500V$ 1.00MΩ IAn Tipo Vtest
10.	In caso di esito negativo del test RCD (Trcd >300ms o Ircd > 33.0mA) il test auto è automaticamente bloccato e il messaggio "NO OK" è mostrato a display come nella videata a lato	AUTO 15/10 - 18:04 TT > φ <
11.	In caso di esito negativo del test Isolamento (resistenza di isolamento < soglia minima impostata) il test auto è automaticamente bloccato e il messaggio " NO OK " è mostrato a display come nella videata a lato	AUTO 15/10 - 18:04 TT >Φ<

12. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

15/10 - 18:04

6.1.1. Situazioni anomale

1. Qualora venga rilevata una tensione L-N o L-PE AUTO ΤN superiore al limite massimo (265V) lo strumento non effettua la prova, visualizzando una videata come quella a fianco. Controllare il collegamento dei cavi di misura

Isc=--- A $ZL-N=\cdots \Omega$ Ifc=--- A $ZL-PE=---\Omega$ Trcd=---ms Ircd=---mA FREQ=50.00Hz Ut=---V VL-PE=270V VL-N=272V Tensione > 265V30mA 500V 1.00MΩ l∆n Tipo Vtest Lim 2. Qualora venga rilevata una tensione L-N o L-PE inferore AUTO 15/10 - 18:04 ΤN Isc=--- A $ZL-N=\cdots \Omega$ $ZL-PE=---\Omega$ lfc=--- A Trcd=---ms Ircd=---mA FREQ=50.00Hz Ut=---V VL-PE=15V VL-N=15VTensione < 100V \sim 500V 1.00MΩ 30mA Vtest l∆n Tipo Lim 15/10 - 18:04 ΤN Isc=--- A $ZL-N=--- \Omega$ lfc=--- A $ZL-PE=---\Omega$ Trcd=---ms Ircd=---mA FREQ=--- Hz Ut=---V VL-PE=--- V VL-N=--- V Invertire L-N \sim 30mA 500V 1.00MΩ Tipo Vtest Lim l∆n

4.	Se lo strumento rileva un potenziale pericoloso sul	AUTO	15/10	- 18:04	
	conduttore PE blocca la prova e visualizza il messaggio a	TN			
	lato. Controllare l'efficienza del conduttore PE e dell'impianto di terra	lsc=	А	Z L - N =	Ω
		lfc=	A Z	ZL-PE=	Ω
		Trcd= FREQ=- VL-PE=	ms Hz V	lrcd= Ut= VL-N=	mA -V V
		Те	nsion	e su P	E
		20	0	5001/	1.00140
		JUMA	.0	200V	1.00MΩ
		l∆n	Tipo	Vtest	Lim

al limite minimo (100V) lo strumento non effettua la prova, visualizzando una videata come quella a fianco. Controllare che l'impianto in esame sia alimentato

3. Qualora venga rilevato lo scambio tra i terminali di fase e AUTO neutro lo strumento non effettua la prova e visualizza una videata come quella a fianco. Ruotare la spina shuko o controllare il collegamento dei cavi di misura

IT - 21

6.2. DMM: FUNZIONE MULTIMETRO DIGITALE

Questa funzione permette di leggere i valori TRMS in tempo reale di Tensione P-N, Tensione P-PE, Tensione N-PE e Frequenza (@ ingressi P-N) quando lo strumento è collegato ad un impianto.

Fig. 8: Collegamento dello strumento tramite cavo con spina Shuko

Fig. 9: Collegamento allo strumento tramite cavi singoli e puntale remoto

 Premere il tasto MENU, spostare il cursore su DMM nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato

I	DMM	15/10 -	- 18:04	
è				
a				
	FREQ.	=	0.00	Hz
	VL-N	=	0	V
	VL-PE	=	0	V
	VN-PE	=	0	V

2. Inserire i connettori verde, blu e nero del cavo shuko a tre pin nei corrispondenti terminali di ingresso B1, B3 e B4 dello strumento. In alternativa, utilizzare i singoli cavi e applicare le relative clip a coccodrillo alle estremità libere dei cavi. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel terminale di ingresso B1. Collegare la spina shuko, i morsetti a coccodrillo o il puntale remoto alla rete elettrica secondo la Fig. 8 o Fig. 9

3. I valori TRMS di tensione L-N, tensione L-PE, tensione N-PE e la frequenza della tensione L-N sono mostrati a display.

Premere il tasto **GO/STOP** per abilitare/disabilitare la funzione "HOLD" in modo da fissare il valore a display.

15/10 -	- 18:04	
=	50.00	Hz
=	230	V
=	230	V
=	2	V
HC	OLD	
	15/10 - = = = =	15/10 - 18:04 = 50.00 = 230 = 230 = 2 HOLD

ATTENZIONE

Questo dato non è salvabile nella memoria interna

6.3. RPE: CONTINUITÀ DEI CONDUTTORI DI PROTEZIONE

Questa funzione viene eseguita secondo le norme CEI 64.8 612.2, IEC/EN61557-4, BS7671 17th edition e consente la misura della resistenza dei conduttori di protezione ed equipotenziali.

ATTENZIONE

- Lo strumento può essere usato per misure su installazioni con categoria di sovratensione CAT IV 300V verso terra e max 415V tra gli ingressi
- Si raccomanda di impugnare il coccodrillo rispettando la zona di sicurezza individuata dalla barriera paramano (vedere § 4.2).
- Verificare l'assenza di tensione ai capi dell'oggetto in prova prima di eseguire la misura di continuità
- Il risultato delle misure può essere influenzato dalla presenza di circuiti ausiliari collegati in parallelo all'oggetto in prova o per effetto di correnti transitorie

Sono disponibili le seguenti modalità di funzionamento:

- STD Il test è attivato premendo il tasto GO/STOP (o il tasto START sul puntale remoto). Modo raccomandato
- TMR Lo strumento esegue la misurazione con la possibilità di impostare il tempo di durata della prova. L'operatore può impostare un tempo sufficientemente lungo per poter muovere i conduttori di protezione mentre lo strumento sta eseguendo la prova al fine di poter individuare un'eventuale cattiva connessione. Per l'intera durata della misura lo strumento emette un segnale acustico ogni 3 secondi. L'operatore può toccare le parti metalliche in prova mentre lo strumento suona. Se, durante la misura, un risultato assume un valore maggiore della soglia limite impostata lo strumento emette un segnale acustico continuo. Premere il tasto GO/STOP o il tasto START sul puntale remoto per terminare la prova
- >\$\$
 Compensazione della resistenza dei cavi utilizzati per la misurazione, lo strumento sottrae automaticamente il valore della resistenza dei cavi al valore di resistenza misurato. E' pertanto necessario che tale valore venga misurato ogni volta che i cavi di misura vengono cambiati o prolungati

ATTENZIONE La prova di continuità è eseguita erogando una corrente superiore a 200mA per resistenze non superiori a circa 5Ω (compresa la resistenza dei cavi di misura). Per valori di resistenza superiori lo strumento esegue la prova con una corrente inferiore a 200mA

Fig. 10: Prova di continuità tramite cavi singoli

Fig. 11: Prova di continuità tramite puntale remoto

- Premere il tasto MENU, muovere il cursore su RPE tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento mostra a display una videata come quella a lato
 R = - - - Ω Itest = - - mA
 STD 2.00Ω ---Ω MODE Lim
- Usare I tasti freccia ◀, ► per selezionare il parametro da modificare e i tasti freccia ▲, ▼ per modificare il valore del parametro
 - MODE → Il tasto virtuale permette l'impostazione dei modi di misura. Le seguenti opzioni sono possibili: STD, TMR
 - ► Lim → Questo tasto virtuale permette l'impostazione della soglia limite massima in modo da considerare corretta la misura di continuità. E' possibile impostare un valore compreso nel campo: $0.01\Omega \div 9.99\Omega$ in passi da 0.01Ω
 - ➤ Time (modo TMR) → Questo tasto virtuale permette di impostare la durata della misura nel campo: 3s ÷ 99s in passi da 3s
- Inserire i connettori blu e nero dei cavi singoli nei corrispondenti terminali di ingresso B4 e B1 dello strumento. Collegare i corrispondenti coccodrilli all'estremità dei cavi rimasta libera. Eventualmente utilizzare il puntale remoto inserendone il connettore multipolare nel terminale di ingresso B1
- 4. Se la lunghezza dei cavi in dotazione è insufficiente per eseguire la misura, estendere normalmente il cavo blu
- 5. Selezionare il modo $>\phi<$ per eseguire la compensazione della resistenza dei terminali di misura come indicato nel § 6.3.2

ATTENZIONE

Accertarsi che ai capi del conduttore in esame non sia presente tensione prima di connettervi i terminali di misura..

6. Connettere i puntali e/o il puntale remoto al conduttore in esame in accordo alle Fig. 10 o Fig. 11

ATTENZIONE

Accertarsi sempre, prima di ogni misurazione, che il valore di resistenza di compensazione sia riferita ai cavi effettivamente utilizzati. In caso di dubbio ripetere la procedura di calibrazione indicata nel § 6.3.2

7. Premere il tasto **GO/STOP** sullo strumento od il tasto **START** sul puntale remoto. Lo strumento avvia la misura

ATTENZIONE

Il messaggio "**Misura...**" appare a display ad indicare che lo strumento sta eseguendo la misura. Durante tutta questa fase non scollegare i terminali di misura dello strumento dall'impianto in esame

 Alla fine della misura lo strumento mostra a display il messaggio "OK" in caso di risultato positivo (valore inferiore alla soglia limite impostata) o "NO OK" in caso di risultato negativo (valore superiore alla soglia limite impostata)

RPE 15	5/10 –	18:04	, Lines A
R	=	0.22	Ω
ltest	=	212	mA
		17	
	0	K	
STD 2.0	00Ω		0.21 Ω
MODE L	im		> \$ <

9. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

6.3.1. Modo TMR

 Usare I tasti freccia (▲,▼) e selezionare l'opzione "TMR" nella sezione "MODE". Lo strumento mostra a display una videata come quella a lato. Impostare la durata della misura nella sezione "Tempo" e seguire i passi dal punto 2 al punto 6 del § 6.2

"	RPE	15/10) – 1	8:0)4			
a a	R	=	-	-	-	Ω		
C	Ites	t =	-	-	-	m	A	
	Т	=	-	-	-	s		
	TMR	2.00Ω	1	2s				Ω
	MODE	Lim	Те	mp	00		> ()<

Premere il tasto GO/STOP oppure il tasto START sul puntale remoto per attivare la prova. Lo strumento inizia una serie di misure continue per l'intera durata della misura impostata mostrando un conto alla rovescia e un breve suono ogni 3 secondi alternando i messaggi "Misura..." e "Attendi..."

EASYTEST - COMBI519

 Alla fine del tempo di misura impostato lo strumento mostra a display <u>il valore massimo delle misure parziali</u> <u>eseguite</u> e il messaggio "OK" in caso di esito positivo (valore inferiore alla soglia limite impostata) o "NO OK" in caso di esito negativo (valore superiore alla soglia limite impostata)

)	RPE	15/10	0 – 18:04	
<u>i</u>	R	=	0.54 Ω	
) J	ltest	=	209 mA	
	Т	=	0 s	
		C	JK	
	TMR 2	2.00Ω	12s 0.01	Ω
	MODE	Lim	Tempo > d)<

4. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

6.3.2. Modo > ϕ <

Fig. 12: Compensazione della resistenza dei cavi singoli e del puntale remoto

- 1. Usare I tasti \blacktriangleleft , \blacktriangleright per selezionare il tasto virtuale $> \phi <$
- 2. Connettere i coccodrilli e/o i puntali e/o il puntale remoto al conduttore in esame in accordo alla Fig. 12.
- 3. Premere il tasto **GO/STOP** sullo strumento od il tasto **START** sul puntale remoto. Lo strumento inizia la procedura di calibrazione dei cavi seguita immediatamente dalla verifica del valore compensato

ATTENZIONE

Se il messaggio "**Misura...**" appare a display ciò indica che lo strumento sta eseguendo la misura. Se il messaggio "**Verifica**" appare a display, lo strumento sta verificando il valore calibrato. Durante l'intero processo non scollegare i puntali tra loro e dallo strumento

 Appena la calibrazione è terminata, nel caso in cui il valore RPE rilevato sia inferiore a 5Ω, lo strumento emette un doppio segnale acustico ad indicare il risultato positivo del test e mostra una videata come quella presente a lato

5. Per cancellare il valore della resistenza di compensazione dei cavi, è necessario eseguire una procedura di calibrazione del cavo con una resistenza maggiore di 5Ω ai puntali (es. con puntali aperti)

6.3.3. Situazioni anomale

1. Nel caso in cui il valore rilevato sia superiore al limite impostato, lo strumento emette un lungo segnale acustico e visualizza una videata simile a quella qui riportata a lato

RPE	15/10	– 18:04		
R	=	4.54	Ω	
Itest	: =	212	mΑ	
		- · -		
NO OK				
STD	2.00Ω		0.01 Ω	
MODE	Lim		>	

 $\frac{R P E 15/10 - 18:04}{R} = >1999 \Omega$ Itest = - - - m A $\frac{NOOK}{STD 2.00\Omega} = 0.01 \Omega$ $MODE Lim > \phi <$

•	RPE	15/10	- 18:04		
•	R	=		Ω	
	ltes	t =		mA	
	Vin > 3V				
	STD	2.00Ω		Ω	
	MODE	Lim		> \$<	

 Se lo strumento rileva una resistenza superiore al fondo RPE scala emette un segnale acustico prolungato e visualizza una videata come quella a lato

- Utilizzando il modo > q<, nel caso in cui lo strumento rilevi un reset della calibrazione (operazione eseguita a terminali aperti), emette un suono lungo e visualizza una videata come quella a lato
- Utilizzando il modo >φ<, se lo strumento rileva ai suoi terminali una resistenza maggiore di 5Ω emette un segnale acustico prolungato, azzera il valore compensato e visualizza una videata come quella a lato
- 5. Se lo strumento rileva ai suoi terminali una tensione superiore a 3V non esegue il test, emette un segnale acustico prolungato e visualizza una videata come quella a lato

6.4. LOΩ: CONTINUITÀ DEI CONDUTTORI DI PROTEZIONE CON 10A

Questa funzione permette di misurare la resistenza di conduttori di protezione ed equipotenziali con una **corrente di prova >10A** utilizzando l'accessorio opzionale EQUITEST collegato allo strumento tramite il cavo C2050. L'accessorio EQUITEST deve essere alimentato direttamente dalla rete su cui vengono effettuate le misurazioni. **Per informazioni dettagliate, fare riferimento al manuale utente dell'accessorio EQUITEST.**

ATTENZIONE

- Lo strumento può essere usato per misure su installazioni con categoria di sovratensione CAT IV 300V verso terra e max 415V tra gli ingressi
- Si raccomanda di impugnare il coccodrillo rispettando la zona di sicurezza individuata dalla barriera paramano (vedere § 4.2).
- Verificare l'assenza di tensione ai capi dell'oggetto in prova prima di eseguire la misura di continuità

- I risultati possono essere influenzati dalla presenza di circuiti ausiliari collegati in parallelo l'oggetto della misura o da correnti transitorie
- Il test di continuità viene effettuato fornendo una corrente superiore a 10A nel caso la resistenza non superi ca. 0.7Ω (inclusa la resistenza dei cavi di prova). Il metodo a 4 fili consente di estendere i puntali senza alcuna calibrazione preliminare

 Premere il tasto MENU, spostare il cursore su LoΩ nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato
 LoΩ 15/10 – 18:04
 R = - - - Ω Itest = - - - A

> 0.500 Ω MAN Lim. INFO MODE

- Usare I tasti freccia ◀, ► per selezionare il parametro da modificare e i tasti freccia ▲, ▼ per modificare il valore del parametro:
 - > Lim → questo tasto virtuale permette la selezione del limite massimo per considerare corretto il valore misurato. È possibile impostare un limite compreso nel campo: $0.003\Omega \div 0.500\Omega$ in passi di 0.001
 - MODE → Il tasto virtuale permette l'impostazione dei modi di misura. Le seguenti opzioni sono possibili: MAN (la misura è attivata manualmente tramite il tasto GO/STOP), AUTO (la misura è automaticamente avviata dopo il collegamento dell'accessorio EQUITEST al cavo in prova senza pressione del tasto GO/STOP)
- Collegare l'accessorio EQUITEST all'alimentazione LoΩ 1 principale (230/240V - 50/60Hz) e notare l'accensione del LED verde. Collegare l'accessorio allo strumento tramite il cavo C2050. Successivamente il messaggio "Conn." è mostrato a display ad indicare il corretto riconoscimento da parte dello strumento

 Utilizzare i tasti ◀, ▶ per selezionare la voce "INFO". La LoΩ videata a lato è mostrata sul display indicando le informazioni relative all'accessorio EQUITEST

- 5. Collegare i terminali a coccodrillo al conduttore da testare (per ogni dettaglio vedere il manuale d'uso dell'accessorio EQUITEST)
- 6. Premere il tasto GO/STOP sullo strumento per attivare la misura (in caso di selezione modo MAN) oppure eseguire la misura automatica (in caso di selezione modo AUTO). Al termine della misura il messaggio "OK" è mostrato a display in caso di risultato positivo (valore inferiore alla soglia limite impostata) o "NO OK" in caso di risultato negativo (valore superiore alla soglia limite impostata)

LoΩ	15/10	- 18:04	
R	=	0.328	8Ω
ltest	=	14.70	6 A
OK			
0.500 Ω	Conn.	MAN	
Lim.	INFO	MODE	

7. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

3.

6.4.1. Situazioni anomale

Se lo strumento rileva ai suoi terminali una tensione Lon 1. superiore a 3V non esegue il test, emette un segnale acustico prolungato e visualizza una videata come quella a lato

15/10 - 18:04

= - - - Ω

R

2. Se lo strumento non rileva l'accessorio EQUITEST Lon visualizza una videata come quella a lato. Verificare i collegamenti con l'accessorio

Lo strumento visualizza sul display la scritta "NON OK" in	LoΩ	15/10 – 18:04	Ì	
caso di esito positivo (valore inferiore alla soglia limite impostata) ma con corrente di prova inferiore a 10A come	R	= 0.119 Ω		
indicato nella videata come quella a lato	Itest	= 8.05 A		
	NON OK			
	0.500Ω Conn. MAN			
	Lim.	INFO MODE		

6.5. MΩ: MISURA RESISTENZA DI ISOLAMENTO

Questa funzione viene eseguita secondo le norme CEI 64.8 612.3, IEC/EN61557-2, BS7671 17th edition, AS/NZS 3000, AS/NZS 3017 e consente la misura della resistenza di isolamento tra i conduttori attivi e tra ogni conduttore attivo e la terra. Sono disponibili le seguenti modalità di funzionamento:

- MAN Il test è eseguito tra i conduttori L-N, L-PE o N-PE e ha una durata fissa di 3s quando si preme il tasto GO/STOP sullo strumento (o START sul puntale remoto). Modalità consigliata
- TMR il test viene effettuato tra i conduttori L-PE ed ha una durata programmabile nel campo 3s ÷ 999s in passi da 1s alla pressione del tasto GO/STOP sullo strumento (o START del puntale remoto). È possibile eseguire il test di durata DAR (Rapporto di Scarica Dielettrca) per un tempo di test >60s e PI (Indice di polarizzazione) per un tempo di test > 600s (10 min) (vedere § 12.2.1 e § 12.2.2)
- AUTO Lo strumento esegue un test di sequenza automatico tra i conduttori L-N, L-PE e N-PE alla pressione del tasto GO/STOP sullo strumento (o START del puntale remoto)

Fig. 13: Isolamento tra L-N-PE tramite cavi singoli (modi MAN e AUTO)

Fig. 14: Isolamento tra L-N-PE tramite cavi singoli e puntale remoto (modi MAN e AUTO)

Fig. 15: Isolamento tra L-N-PE tramite cavo con spina Shuko (modi MAN e AUTO)

Fig. 16: Isolamento tra L-PE tramite cavo con spina Shuko (modo TMR)

I-PF

FUNZ

MODE

Vtest

Lim.

Fig. 18: Isolamento tra L-PE tramite cavi singoli e puntale remoto (modo TMR)

1.	Premere il tasto MENU , spostare il cursore su $M\Omega$ nel	MΩ	15/10 – 18:04	
	menu principale tramite i tasti freccia (\blacktriangle, ∇) e confermare con ENTER . Successivamente lo strumento visualizza una	R	= Ms	Ω
	videata simile a quella qui riportata a lato	Vt	= V	
		Т	= s	
		MAN	500V 1.00MΩ I	L-F

- 2. Utilizzare i tasti ◀, ▶ per selezionare il parametro da modificare e i tasti ▲, ▼ per modificare il valore del parametro:
 - ➤ MODE → Questo tasto permette di impostare il tipo di test. Sono disponibili le seguenti opzioni: MAN, TMR, AUTO
 - > Vtest \rightarrow Questo tasto permette di selezionare la tensione di prova DC generata durante la misura. Sono disponibili i seguenti valori: 50V, 100V, 250V, 500V, 1000V
 - \rightarrow Lim \rightarrow Questo tasto permette la selezione della soglia limite minima per considerare corretta la misura. Sono disponibili i seguenti valori: 0.05MΩ, 0.10MΩ, $0.23M\Omega$, $0.25M\Omega$, $0.50M\Omega$, $1.00M\Omega$, $100M\Omega$
 - > FUNZ \rightarrow Questo tasto permette di impostare il tipo di connessione L-N, L-PE o N-PE nel modo MAN
 - \succ Temp \rightarrow solo in modalità TMR, questo tasto virtuale permette di impostare la durata del test nel campo: 3s ÷ 999s
- 3. Si consiglia di impostare il valore della tensione fornita durante la misura e il limite minimo per considerare la misura corretta secondo le prescrizioni della normativa di riferimento (vedere § 12.2)
- 4. Inserire i connettori verde e nero dei singoli cavi nei corrispondenti terminali di ingresso B1, B3, B4 (modi MAN e AUTO) o B1, B3 (modo TMR) dello strumento. Applicare i terminali a coccodrillo alle estremità libere dei cavi. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel terminale di ingresso B1. Se la lunghezza dei cavi forniti non è sufficiente per la misura da effettuare, allungare il cavo verde

ATTENZIONE

- Scollegare ogni cavo non strettamente coinvolto nella misura
- Prima di collegare i puntali, assicurarsi che non ci sia tensione alle estremità dei conduttori da testare
- 5. Collegare i cavi di misura e il puntale remoto alle estremità dei conduttori da testare come mostrato in Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, o Fig. 18
- 6. Premere il tasto **GO/STOP** sullo strumento o il tasto **START** sul puntale remoto. Lo strumento inizierà la misura

Se sul display appare il messaggio "**Misura**...", lo strumento sta eseguendo il test. Durante tutta questa fase non scollegare i puntali dello strumento dai conduttori in prova, in quanto il circuito potrebbe rimanere affetto da una tensione pericolosa dovuta alle capacità parassite del sistema

ATTENZIONE

- 7. Indipendentemente dalla modalità di funzionamento selezionata, lo strumento, al termine di ogni prova, applica una resistenza ai conduttori di uscita per scaricare le capacità parassite nel circuito
- Al termine della misura (durata fissa 3s) lo strumento visualizza sul display il messaggio "OK" in caso di risultato positivo (valore superiore alla soglia limite minima impostata) o "NO OK" in caso di risultato negativo (valore inferiore alla soglia limite minima impostata). L'indicazione ">999MΩ" indica il fuori scala dello strumento che, normalmente, risulta essere il miglior risultato possibile

MΩ	15/10					
R	>	999	MΩ			
Vt	=	512	V			
т	=	3	S			
ОК						
MAN	500V	1.00MΩ	2 L-PE			
MODE	Vtest	Lim.	FUNZ	,		

2.

4.

6.5.1. Modo TMR

Con i tasti freccia (▲,▼) selezionare l'opzione "TMR" 1. nella sezione "MODE". Lo strumento visualizza una schermata come quella mostrata a lato. Impostare la durata della misura nella sezione "Tempo" e seguire i passaggi dal punto 2 al punto 5 del § 6.5

MΩ	15/10	– 18:04	
R	=		MΩ
Vt =	- V	Т	= s
PI =	-	DAR =	
TMR	500V	1.00MΩ	10s
MODE	Vtest	Lim.	Tempo

Premere il tasto GO/STOP sullo strumento o il tasto	MΩ	15/10	- 18:04	
START sul puntale remoto. Lo strumento avvia la misura per tutta la durata impostata visualizzando il messaggio " Misura ". Lo strumento visualizza il messaggio " OK " sul display in caso di risultato positivo (valore superiore alla soglia minima impostata) o " NO OK " in caso di risultato	R Vt = 52: PI =	= 3V -	102 	MΩ T = 10 s
			OK	
	TMR	500V	1.00MΩ	10s
	MODE	Vtest	Lim.	Tempo

- START sul puntale remoto. Lo strumento avvia la misura per tutta la durata impostata visualizzando il messaggio "Misura...". Lo strumento visualizza il messaggio "OK" su display in caso di risultato positivo (valore superiore alla soglia minima impostata) o "NO OK" in caso di risultato negativo (valore inferiore al limite minimo impostato
- 3. Con una durata della misura ≥ 60s lo strumento mostra del parametro DAR l'indicazione (Rapporto Assorbimento Dielettrico) come mostrato nella videata a lato

l	MΩ	15/10	– 18:04			
ĺ	R	=	102	MΩ		
	Vt = 523	3V		T = 60 s		
	PI =	-	DAR :	= 1.03		
	OK					
	TMR	500V	1.00MΩ	60s		
	MODE	Vtest	Lim.	Tempo		

Con una <u>durata della misura ≥ 600s</u> lo strumento mostra l'indicazione del parametro PI (Indice di Polarizzazione come mostrato nella videata a lato		<u>15/10</u> = 3V 00	<u>– 18:04</u> 102 M T DAR =	MΩ = 600 s 1.03
			OK	
	TMR	500V	1.00MΩ	600s
	MODE	Vtest	Lim.	Tempo

6.5.2. Modo AUTO

- Con i tasti freccia (▲,▼) selezionare l'opzione "AUTO" nella sezione "MODE". Lo strumento visualizza una schermata come quella mostrata a lato Lo strumento esegue il test di isolamento tra: L-N, L-PE e N-PE. Poiché alcuni carichi potrebbero essere ancora collegati tra L-N, lo strumento esegue un test preliminare utilizzando 50V come tensione di prova. <u>Se RL-N è</u> <u>superiore a 50kΩ</u>, viene eseguito un nuovo test di isolamento tra L-N utilizzando il valore Vtest. Infine lo strumento esegue il test di isolamento L-PE e N-PE
- M Ω
 15/10 18:04
 Image: Constraint of the state of the sta
- 2. Premere il tasto GO/STOP sullo strumento o il tasto START sul puntale remoto. Lo strumento avvia la misura sequenziale automatica della resistenza di isolamento tra L-N, L-PE e N-PE rispettivamente visualizzando il messaggio "Misura...". Lo strumento visualizza sul display il messaggio "OK" in caso di esito positivo di ogni prova (valore superiore alla soglia limite minima impostata) o "NO OK" in caso di esito negativo di almeno un test (valore inferiore al soglia limite minima

ΜΩ 15/10 – 18:04							
RL-N	>	999	MΩ	Vt	=	523	۷
RL-PE	=	250	MΩ	Vt	=	525	V
RN-PE	>	999	MΩ	Vt	=	524	V
	OK						
AUTO	5	00V	1.0	2M00	2		
MODE	V	test	L	.im.			

4.

6.5.3. Situazioni anomale

1. Se lo strumento non riesce a generare la tensione $M\Omega$ nominale, emette un lungo segnale acustico per indicare l'esito negativo del test e visualizza una videata come quella a lato

MΩ	15/10 -					
R	=	0.29	MΩ			
Vt	=	534	V			
т	=	3	S			
NO OK						
MAN	500V	1.00MΩ	L-PE			
MODE	Vtest	Lim.	FUNC			

=	MΩ	15	5/10 -	- 18:	04		
)	RL-N RL-PE RN-PE	= > >	0.01 999 999	MΩ MΩ MΩ	Vt Vt Vt	= =	15 V 525 V 524 V
	NO	ΟK	- V	er. l	Jtiliz	ZZ	atori
	AUTO	50	70C	1.0	0M0	2	
	MODE	V	test	1	im		

Al termine della prova, se il valore della tensione di prova	MΩ	15/10 -	- 18:04	
è inferiore al valore nominale, lo strumento visualizza una videata come quella a lato	R	=	0.12	MΩ
	Vt	=	485	V
	Т	=	3	s
	V	'test no	n corretta	1
	MAN	500V	1.00MΩ	L-PE
	MODE	Vtest	Lim.	FUNC

2. Al termine della prova, se il valore di resistenza misurato è inferiore al limite impostato, lo strumento emette un lungo segnale acustico per indicare l'esito negativo del test e visualizza una videata come quella a lato

3. In modo AUTO se la misura di isolamento LN è <50k Ω = 0.05MΩ tutti i test sono completati o se è stato premuto il tasto STOP, se RL-PE e RN-PE> Lim e Vt> Vnom lo strumento mostra la schermata come quello a lato. Scollegare i carichi e riprendere il test

5. Se lo strumento rileva ai suoi terminali una tensione <u>superiore a 30V</u> non esegue il test, emette un segnale acustico prolungato e visualizza una videata come quella a lato

MΩ	15/10	- 18:04				
R	=		MΩ			
Vt	=	'	V			
Т	=	;	S			
Vin >30V						
	=====					
MAN	500V	1.00MΩ	L-PE			
MODE	Vtest	Lim.	FUNC			

6.6. RCD: TEST SU INTERRUTTORI DIFFERENZIALI

Questa funzione viene svolta in conformità alla norma IEC/EN61557-6, BS7671 17/18a edizione e permette di misurare il tempo di intervento e la corrente di interruttori differenziali scatolati di tipo A/F ($\Lambda \Lambda$ /w), AC (Λ), B/B+ (==/==+) DD, e CCID (Λ ,==), Generali (G) e Selettivi (S).

ATTENZIONE

ATTENZIONE

- \bigwedge
- Alcune combinazioni di parametri di prova possono non essere disponibili in conformità con le specifiche tecniche dello strumento e le tabelle RCD (vedere § 10.1- le celle vuote delle tabelle RCD indicano situazioni non disponibili)
- La selezione RCD-DD non è inclusa nella funzione sequenza AUTO

I seguenti modi di misura sono disponibili:

- AUTO Lo strumento esegue automaticamente la misura del tempo di intervento con una corrente di prova pari alla metà, una o cinque volte il valore impostato di corrente nominale e con una corrente di prova in fase con la semionda positiva della tensione di rete. <u>Modo raccomandato</u>
- AUTO Lo strumento esegue automaticamente la misura del tempo di intervento con una corrente di prova pari alla metà, una o cinque volte il valore di corrente nominale impostato, con una corrente di prova in fase con la semionda positiva (↑) e negativa (↓) della tensione di rete <u>e anche corrente reale di intervento</u>
- x¹⁄₂ Lo strumento esegue automaticamente la misura del tempo di intervento con una corrente di prova pari alla metà del valore di corrente nominale impostato, con una corrente di prova in fase con la semionda positiva (↑) e negativa (↓) della tensione di rete
- x1 Lo strumento esegue automaticamente la misura del tempo di intervento con una corrente di prova uguale al valore di corrente nominale impostato, con una corrente di prova in fase con la semionda positiva (↑) e negativa (↓) della tensione di rete
- **x5** Lo strumento esegue automaticamente la misura del tempo di intervento con una corrente di prova cinque v olte il valore di corrente nominale impostato, con una corrente di prova in fase con la semionda positiva (↑) e negativa (↓) della tensione di rete
- ▲ Lo strumento esegue la misura con una corrente di prova crescente. Questo test può essere eseguito per determinare la reale corrente di intervento dell'RCD con la semionda positiva (↑) e negativa (↓) della tensione di rete

ATTENZIONE

La verifica del tempo di intervento di un interruttore differenziale comporta l'intervento della protezione stessa. Verificare pertanto che a valle della protezione differenziale in esame NON siano allacciate utenze o carichi che possano risentire dalla messa fuori servizio dell'impianto.

Scollegare tutti i carichi allacciati a valle dell'interruttore differenziale in quanto potrebbero introdurre correnti di dispersione aggiuntive a quelle fatte circolare dallo strumento invalidando così i risultati della prova.

Fig. 19: Collegamento per sistema Monofase L-N-PE tramite cavo con spina Shuko

Fig. 20: Collegamento per sistema Monofase L-N-PE con cavi singoli e puntale remoto

Fig. 21: Collegamento per sistema Trifase L1-L2-L3-N tramite cavi singoli e puntale remoto

Fig. 22: Collegamento per sistema Bifase L1-L2-PE tramite cavi singoli e puntale

Fig. 23: Collegamento per un sistema Trifase L1-L2-L3-N (no PE) mediante cavi singoli e puntale remoto

Fig. 24: Collegamento per un sistema Trifase L1-L2-L3-PE con cavi e puntale remoto

 Premere il tasto MENU, spostare il cursore su RCD nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato in caso di sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni indicate cambiano in VL1-PE e VL1-L2. Selezionare il paese (vedere § 5.1.2), le opzioni "TN, TN o IT", "25 o 50V", "50Hz o 60Hz" e la tensione di riferimento nelle impostazioni generali dello strumento (vedere § 5.1.3)

- 2. Utilizzare i tasti ◀, ► per selezionare il parametro da modificare e i tasti ▲, ▼ per modificare il valore del parametro:
 - MODE → II tasto virtuale permette di impostare la modalità di misura dello strumento, che può essere: AUTO, x½, x1, x5, , , AUTO, , AUTO, , AUTO, , AUTO, AUTO
 - ▷ I∆n → II tasto virtuale consente di impostare il valore nominale della corrente di intervento dell'RCD, che può essere: 5mA, 6mA, 10mA, 20mA, 30mA, 100mA, 300mA, 500mA, 650mA, 1000mA
 - Tipo → II tasto virtuale consente la selezione del tipo di RCD, che può essere: A/F (∧∧/w - Generale), A/F (∧∧/wS - Selettivo), AC (∿ - Generale), AC (∿S -Selettivo), B/B+ (==/==+), DD e CCID∿, CCID== (nazione USA) con polarità positiva 0° (↑) o negativa 180° (↓)
 - > Ut → II tasto virtuale permette di impostare l'eventuale visualizzazione del valore della tensione di contatto a fine misura. Opzioni: Ut o NoUt

- 3. Inserire i connettori verde, blu e nero del cavo shuko a tre pin nei corrispondenti terminali di ingresso B3, B4 e B1 dello strumento. In alternativa, utilizzare i singoli cavi e applicare i terminali a coccodrillo alle estremità libere dei cavi. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel terminale di ingresso B1. Collegare la spina shuko, i coccodrilli o il puntale remoto alla rete elettrica in accordo alle Fig. 19, Fig. 20, Fig. 21, Fig. 22, Fig. 23, Fig. 24,

6.6.1. Modo AUTO

5.	Premere il tasto GO/STOP sullo strumento, il tasto	AUT TT	0 15/1	0 – 18:04	
	(vedere § 5.1.5). Lo strumento inizia la misura	 ∨ 1	0°	180°	
			301115	115	
		X 5	ms	ms	
		X ½	ms	m s	
		FRE VL-	Q=50.00 N=232V)Hz Ut=V VL-PE=231V	/
			Mis	ura	

ATTENZIONE

Se sul display viene visualizzato il messaggio "**Misura...**", lo strumento sta eseguendo la misurazione. Durante tutta questa fase non scollegare i puntali dello strumento dalla rete

- II modo AUTO prevede l'esecuzione automatica di 6 AUT misure in sequenza:
 - IdN x 1 con fase 0° (l'RCD deve scattare, resettare l'interruttore, messaggio "Riarma differenziale")
 - IdN x 1 con fase 180° (I'RCD deve scattare, resettare l'interruttore, messaggio "Riarma differenziale")
 - IdN x 5 con fase 0° (l'RCD deve scattare, resettare l'interruttore, messaggio "Riarma differenziale")
 - IdN x 5 con fase 180° (l'RCD deve scattare, resettare l'interruttore, messaggio "Riarma differenziale")
 - IdN x½ con fase 0° (I'RCD non deve scattare)
 - IdN x½ con fase 180° (I'RCD non deve scattare, fine test)

6	AUT	0	15/10 -	- 18:04	
	ΤT				
0		() °	180°	
	X 1	38 m	าร	m s	
е	X 5	n	ns	ms	
e	X 1⁄2	I	ms	ms	
0					
	FRE	Q = 5	50.00H	z Ut=	- V
е	VL-	N = 2	32V V	L - PE = 2	231V
	R	liarr	na dif	ferenzi	ale
	AU	то	30mA	2	
_	MO	DE	l∆n	Tipo	Ut

AUTO

MODE

30mA

l∆n

Ut

Tipo

- In caso di esito **positivo** (tutti i tempi di intervento rispettano quanto indicato nel § 12.4) di tutti i test eseguiti in sequenza viene visualizzato il messaggio "OK" e la videata a lato viene visualizzata dallo strumento

)	AUT	0	15/10	15/10 – 18:04			
t	ΤN						
2		C)°	18	0 °		
<i>.</i>	X 1	38 m	١S	35m	s		
,	X 5	2 2 m	าร	27m	s		
	X ½	>99	9 m s	>99	9 m	s	
	FRE VL-	EQ=5 N=2	50.00H 32V \	lz Ut /L-PE	= 0 . = 2	.0V 231\	V
			0	K			
	AU	то	30mA	2	,		
	MC	DE	lΔn	Tip	С	l	Jt

8. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

6.6.2. Modo AUTO

 Premere il tasto GO/STOP sullo strumento, il tasto START sul puntale remoto o la funzione AutoStart (vedere § 5.1.5). Lo strumento inizia la misura

)	RCD		15/10 –	18:04	
	ΤТ	0 °		180°	
			mΑ		m A
	X 1		m s		m s
	X 5		m s		m s
	X 1⁄2		m s		m s
	FRE	Q.=5	0.0Hz	Ut = -	V
	VL-P	E= 2	31V	VL-N =	= 232V
			Misu	ra	
	AUTO)	30mA	\sim	
	MOE	ЭE	l∆n	Tipo	Ut

ATTENZIONE

Se sul display viene visualizzato il messaggio "**Misura...**", lo strumento sta eseguendo la misurazione. Durante tutta questa fase non scollegare i puntali dello strumento dalla rete

- II modo AUTO prevede l'esecuzione automatica di 8 misure in sequenza:
 - I (Rampa) con fase 0° (RCD deve scattare, resettare RCD, messaggio "Riarma differenziale")
 - I (Rampa) con fase 180° (l'RCD deve scattare, resettare RCD, messaggio "Riarma differenziale")
 - IdN x 1 con fase 0° (l'RCD deve scattare, resettare RCD, messaggio "Riarma differenziale")
 - IdN x 1 con fase 180° (l'RCD deve scattare, resettare RCD, messaggio "Riarma differenziale")
 - IdN x 5 con fase 0° (l'RCD deve scattare, resettare RCD, messaggio "Riarma differenziale")
 - IdN x 5 con fase 180° (l'RCD deve scattare, resettare RCD, messaggio "Riarma differenziale")
 - IdN x½ con fase 0° (I'RCD non deve scattare)
 - IdN x½ con fase 180° (I'RCD non deve scattare, fine test)

RCD)	15/10 –	18:04	
ΤT	0 °		180°	
	23	mΑ		m A
X 1		m s		m s
Χ5		m s		m s
X 1⁄2		m s		m s
FRE	Q.=50	0.0Hz	Ut = - ·	V
VL-F	PE= 2	31V	VL-N =	232V

Riarma differenziale.								
AUTO	30mA	2						
MODE	l∆n	Tipo	Ut					

 In caso di esito **positivo** (tutti i tempi di intervento rispettano quanto indicato nel § 12.4) di tutti i test eseguiti in sequenza viene visualizzato il messaggio "OK" e la videata a lato viene visualizzata dallo strumento

RCD	15	5/10 –	18:04	
ΤT	0 °		180°	
.	23	mΑ	23	m A
X 1	23	m s	23	m s
Χ5	15	m s	15	m s
X 1⁄2	>999	m s	>999	m s
FRE	Q.=50.	0 H z	Ut = 1	V
VL-P	E = 23	1 V	VL-N :	= 232V
		٥k	ζ.	
AUTO	30)mA	\sim	
MO	DE I	Δn	Tipo	Ut

8. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

6.6.3. Modi x¹/₂, x1, x5

5. Premere il tasto GO/STOP sullo strumento, il tasto RCD 15/10 - 18:04
 START sul puntale remoto o la funzione AutoStart (vedere § 5.1.5). Lo strumento inizia la misura

	0/10	10.01		
TT T	=		ms	
Ut	=		V	
FREQ. = 0 VL-PE=0V	.00Hz	VL-N	I=0V	
	Misu	ra		
X1	30mA	J.	1	
MODE	l∆n	Tipo)	Ut

ATTENZIONE

Se sul display viene visualizzato il messaggio "**Misura...**", lo strumento sta eseguendo la misurazione. Durante tutta questa fase non scollegare i puntali dello strumento dalla rete

Quando il differenziale interviene e separa il circuito, se ri li tempo di intervento rientra nei limiti riportati nel § 12.4, lo strumento emette un doppio segnale acustico che segnala la visualizzazione del messaggio "OK" e la visualizzazione della videata a lato dello strumento

Э	RCD	15/10 -	18:04		
. n	тт Т	=	38	m	IS
a	Ut	=	1	V	
	FREQ. = VL-PE=2	50.00H 31V	Hz VL-I	N=2	34V
		O	νK		
	X1	30mA	2	י ↑	
	MODE	l∆n	Tip	0	Ut

6.6.4. Modo 📕

La normativa definisce i tempi di intervento degli RCD alla corrente nominale. Il modo **d** è usato per rilevare il tempo di intervento alla corrente di intervento (che potrebbe anche essere inferiore alla tensione nominale).

5. Premere il tasto GO/STOP sullo strumento, il tasto START sul puntale remoto o la funzione AutoStart (vedere § 5.1.5). Lo strumento inizia la misura .
.
.
T = --- mA
T = --- W
FREQ. = 50.00Hz
VL-PE=231V
VL-N=234V
Misura...
30mA ____

ATTENZIONE

 \bigwedge

Se sul display viene visualizzato il messaggio "**Misura...**", lo strumento sta eseguendo la misurazione. Durante tutta questa fase non scollegare i puntali dello strumento dalla rete

- 6. In accordo alla norma EN61008, il test per RCD selettivi richiede un intervallo di 60 secondi tra i test. Il modo al non è quindi disponibile per RCD selettivi di ogni tipo
- Quando il differenziale interviene e separa il circuito, se R
 il tempo di intervento e la corrente di intervento
 rientrano nei limiti riportati nel § 12.4, lo strumento
 emette un doppio segnale acustico che segnala la
 visualizzazione del messaggio "OK" e la visualizzazione
 della videata a lato dello strumento

е	RCD	15/10 -	- 18:04	
С	TT		0.1	
0		=	24	ΜA
a e	T = 3	38 ms	Ut =	1 V
	FREQ. = VL-PE=2	= 50.00H 231V	Hz VL-N=	=234V
		C	ЭК	
		30mA	\sim_{\uparrow}	
	MODE	IΔn	Tipo	Ut

MODE

l∆n

Tipo

Ut

6.6.5. Modo DD

La normativa IEC62955 definisce il tempo e la corrente di intervento per gli RCD-DD (Detecting Devices) alla corrente nominale di 6mA. <u>In questa modalità sono</u> disponibili solo le opzioni x1 e

5. Premere il tasto GO/STOP sullo strumento, il tasto RCD 15/10-18:04
 START sul puntale remoto o la funzione AutoStart (vedere § 5.1.5). Lo strumento inizia la misura
 .
 T = --- mA T = --- V

FREQ. = 50.00Hz VL-PE=231V VL-N=234V

Misura... 6mA DD↑ MODE I∆n Tipo Ut

ATTENZIONE

 \bigwedge

7.

Se sul display viene visualizzato il messaggio "**Misura...**", lo strumento sta eseguendo la misurazione. Durante tutta questa fase non scollegare i puntali dello strumento dalla rete

Al termine della prova nel caso in cui la corrente di RCD intervento sia compresa nei valori previsti nel § 10.1, lo TT strumento emette un doppio segnale acustico che segnala la visualizzazione del messaggio "OK" e la visualizzazione della videata a lato dello strumento

))	11		I	=	4.5	m	A
R	т	=	219	ms	Ut =	0	V
	FRE VL-I	EQ. PE=	= 50 =231	0.00⊢ V	lz VL-N	=23	34V
				0	K		
			6	mA	DD↑		
	MC	DE		Λn	Tipo		Ut

15/10 – 18:04

di	RCD	15/10 –	18:04	
lo he	TT	=	1.2	mA
la	T = 4	62 ms	Ut =	0 V
	FREQ. = VL-PE=2	50.00⊦ 31V	lz VL-N=	234V
		NO	OK	
		6mA	DD↑	
	MODE	l∆n	Tipo	Ut

intervento sia esterna ai valori previsti nel § 10.1, lo strumento emette un doppio segnale acustico che segnala la visualizzazione del messaggio "**NO OK**" e la visualizzazione della videata a lato dello strumento

Al termine della prova nel caso in cui la corrente

6.6.6. Modo CCID (sistemi TN – Nazione USA)

5.	Premere il tasto GO/STOP sullo strumento, il tasto	RC	D	15/	10 – ⁻	18:04		
	START sul puntale remoto o la funzione AutoStart (vedere § 5.1.5). Lo strumento inizia la misura	ΤN		I	=		mA	
		Т	=	I	ms	Ut =	V	
		FRE VL1	EQ. : -PE	= 60. =120	00H:)V	z VL1-L	.2=240\	/
				ľ	Misu	ra		
		_		20	mΑ	CCID√	↑	
		MC	DDE	I/	۱۱	Tipo	Ut	

ATTENZIONE

Se sul display viene visualizzato il messaggio "**Misura...**", lo strumento sta eseguendo la misurazione. Durante tutta questa fase non scollegare i puntali dello strumento dalla rete

 Al termine della prova nel caso in cui la corrente di intervento sia compresa nei valori previsti nel § 10.1, lo strumento emette un doppio segnale acustico che segnala la visualizzazione del messaggio "OK" e la visualizzazione della videata a lato dello strumento

11	RCD		15/10 –	18:04	
0	ΤN	Ι	=	15	mA
a	T =	= 2	19 ms	Ut =	0 V
	FREC VL1-F	2. = PE=′	60.00H 120V	z VL1-L2=	240V
			C	Ж	
		I	20mA	CCID∿↑	
	MOE	ЭE	IΔn	Tipo	Ut

Al termine della prova nel caso in cui la corrente di RCD intervento sia esterna ai valori previsti nel § 10.1, lo strumento emette un doppio segnale acustico che segnala la visualizzazione del messaggio "NO OK" e la visualizzazione della videata a lato dello strumento

RCD	15/10 – 1	8:04			
TN	=	1.2 n	nA		
Т =	462 ms	Ut = 0	V		
FREQ. = VL1-PE	= 60.00Hz =120V	 VL1-L2=2	240V		
NO OK					
	20mA	CCID√↑			
MODE	Làn	Tino	1.1+		

6.6.7. Situazioni anomale

Se lo strumento rileva una frequenza superiore al limite RCD 1. massimo (63Hz), non esegue il test e visualizza una videata come quella a lato

,	RCD	15/10) – 18:0	4	
I	TT				
	Т	=		m	S
	Ut	=		V	
	FREQ. VL-PE=	= >63ł 231V	Hz VL-N	 =2	34V
		Freq fu	ori ran	ge	
	X1	30mA	\sim	1	
	MODE	IΔn	Tipo)	Ut

2. Se lo strumento rileva una tensione L-N o L-PE inferiore RCD al limite minimo (100V), non esegue il test e visualizza una videata come quella a lato. Verificare che il sistema in prova sia alimentato

R C D 15/10 – 18:04					
TT					
Т	=	r	ns		
Ut	=	\	/		
FREQ.	= 0.00	Hz			
VL-PE<	:100V	VL-N=	<100V		
Tensione <100V					
X1	30mA	\mathcal{T}			
MODE	l∆n	Tipo	Ut		

3. Se lo strumento rileva una tensione L-N o L-PE superiore al limite massimo (265V), non esegue il test e visualizza una videata come quella a lato. Verificare il collegamento dei cavi di misura

R C D 15/10 – 18:04					
TT					
Т	=		m	IS	
Ut	=		V		
FREQ. = 50.00 Hz VLPE=>265V VL-N=>265V					
Tensione >265V					
X1	30mA	\sim	\uparrow		
MODE	l∆n	Tip	0	Ut	

Se lo strumento rileva una tensione pericolosa sul 4. conduttore PE fornisce la schermata di avvertenza mostrata a lato e blocca l'esecuzione dei test. Verificare l'efficienza del conduttore PE e dell'impianto di terra

	RCD	15/10	15/10 – 18:04			
•	TT T	=		m	IS	
	Ut	=		V		
	FREQ. = 0.00Hz VL-PE=V VL-N=V					
		Tensio	ne su F	۶E		
	X1	30mA	$\overline{\mathcal{N}}$			
	MODE	lΔn	Tipo		Ut	

8.

Se lo strumento rileva che i conduttori di fase L e neutro 5. N sono invertiti, non esegue il test e viene visualizzata una schermata simile a quella riportata a lato. Ruotare la spina Shuko o controllare il collegamento dei cavi di misura

RCD	15/10	15/10 – 18:04			
TT					
Т	=		m	IS	
Ut	=		V		
FREQ.	= 50.0	0Hz			
VL-PE=	= 1V	VL-	N=2	31V	
	Inver	tire L	-N		
X1	30mA	\sim	<i>י</i> ↑		
MODE	I۸n	Tir	20	Ut	ł

6.	Se lo strumento rileva che i conduttori di fase e PE sono	RCD
	invertiti, non esegue il test e viene visualizzata una	TT
	schermata simile a quella riportata a lato. Verificare il	
	collegamento dei cavi di misura	Ut

RCD	15/10			
TT				
Т	=		m	IS
Ut	=		V	
FREQ.	= 50.0	0Hz		
VL-PE=	231V	VL-I	N=1	V
• = • •				
	Invert	ire L-F	ΡE	
X1	30mA	2	י↑	
MODE	lAn	Tin	0	l It

Se lo strumento rileva l'assenza del segnale al morsetto 7. B3 (conduttore PE), fornisce la schermata di avviso mostrata a lato e blocca l'esecuzione dei test

R C D 15/10 – 18:04						
TT T	=		m	6		
Ut	=		V			
01	_		·			
FREQ.	FREQ. = 50.00 Hz					
VL-PE=	= 114V	VL-	IN=ZC) I V		
Manca PE						
X1	30mA	$\overline{\mathcal{L}}$	<u>^</u>			
MODE	۱۸n	Tin	0	l It		

Se lo strumento rileva l'assenza del segnale al morsetto	RCD	15/10	– 18:04	1
B4 (conduttore neutro), fornisce la schermata di avviso riportata a lato e blocca l'esecuzione dei test	TT T	=		ms
	Ut	=		V
	FREQ. VL-PE=	= 50.00 = 231V) Hz VL-N:	=115V
		Mar	nca N	
	X1	30mA	\sim_1	
	MODE	l∆n	Tipo	Ut

9.

- Se lo strumento rileva l'assenza del segnale al morsetto RCD 15/10 - 18:04 TΤ B1 (conduttore di fase), fornisce la schermata di avviso Т ms - - mostrata a lato e blocca l'esecuzione delle prove = V Ut - - -_ FREQ. = 50.00 Hz VL-N=0V VL-PE=0VManca P X1 30mA ∿↑ MODE Tipo Ut l∆n
 - RCD 15/10 - 18:04 TΤ Т ms - - -Ut V FREQ. = 50.00 Hz VL-PE= 231V VL-N=232V Tensione contatto > Lim 30mA X1 ∿↑ MODE Tipo Ut l∆n

RCD	15/1	15/10 – 18:04				
TT T	=	> 999	m	IS		
Ut	=	1	V			
FREQ. = 50.00 Hz VL-PE= 231V VL-N=232V						
NO OK						
X1	30mA	- ~1				
MODE	lΔn	Tipo		Ut		

SO	RCD	– 18:04		
ter	TT			
di	Т	=		ms
e i	Ut	=		V
) il	51			•
	FREQ	= 50.00	0 Hz	
	VL-PE=	= 00.00 = 231V	VL-N=	232V
	Re	esterna	troppo	alta
	X1	30mA	\mathcal{N}_{\uparrow}	
	MODE	IΔn	Tipo	Ut

 Se lo strumento rileva una tensione di contatto dannosa R Ut (oltre il limite impostato di 25V o 50V) nel pre-test iniziale, fornisce la schermata di avviso mostrata a lato e blocca l'esecuzione delle prove. Verificare l'efficienza del conduttore PE e dell'impianto di terra

11. Se l'RCD non interviene entro la durata massima del test, lo strumento emette un lungo segnale acustico che segnala l'esito negativo del test e quindi visualizza una videata simile a quella qui riportata a lato. Verificare che il tipo di RCD impostato corrisponda al tipo da testare

12. Se lo strumento rileva nei terminali di ingresso un'impedenza esterna troppo elevata tale da non poter fornire la corrente nominale, fornisce la schermata di avviso mostrata a lato e blocca il test. Scollegare i possibili carichi a valle dell'RCD prima di eseguire il test

6.7. LOOP: IMPEDENZA LINEA/LOOP E RESISTENZA GLOBALE DI TERRA

Questa funzione viene svolta in conformità alla norma IEC/EN61557-3, BS7671 17th/18th edizione e consente di misurare l'impedenza di linea, l'impedenza dell'anello di guasto e la corrente di cortocircuito presunta.

In funzione del sistema elettrico selezionato (TT, TN o IT) alcuni tipi di connessione e modi di funzionamento sono disabilitati dallo strumento (vedere Tabella 2)

ATTENZIONE

I seguenti modi di funzionamento sono disponibili:

- L-N Misura standard (STD) dell'impedenza di linea tra il conduttore di fase e il conduttore di neutro e calcolo della corrente di cortocircuito da fase a neutro presunta per sistemi L-N-PE e L-L-PE
- L-L Misura standard (STD) dell'impedenza di linea tra due conduttori di fase e calcolo della corrente di cortocircuito da fase a neutro presunta per sistemi L-N-PE e L-L-PE
- L-PE Misura standard (STD) dell'impedenza dell'anello di guasto tra il conduttore di fase e il conduttore di terra e calcolo della corrente di cortocircuito faseterra presunta per sistemi L-N-PE e L-L-PE
- Ra
 Impedenza di loop senza provocare l'intervento delle protezioni nei sistemi TN (vedere § 12.7) e Resistenza globale di terra (sistemi TT) con neutro (3fili) e senza neutro (2-fili) (vedere § 12.8) per sistemi L-N-PE e L-L-PE
- L1-L2 Misura standard (STD) dell'impedenza di linea tra i due conduttori di fase L1 e L2 di un sistema Bifase e calcolo della corrente di cortocircuito presunta per sistemi L-L-PE
- L1-PE Misura standard (STD) dell'impedenza dell'anello di guasto tra il conduttore di fase e il conduttore di terra di un sistema Bifase e calcolo della corrente di cortocircuito fase-terra presunta per sistemi L-L-PE

ATTENZIONE

Lo strumento esegue il controllo della <u>tensione su PE</u> confrontando la tensione sull'ingresso B4 e il potenziale di terra indotto sulle parti laterali dello stesso per mezzo della mano dell'operatore pertanto al fine di eseguire un controllo corretto della tensione su PE <u>è necessario tenere impugnato lo</u> <u>strumento nella parte laterale destra o nella parte laterale sinistra</u>

ATTENZIONE

La misura dell'impedenza di linea o dell'impedenza del loop di guasto comporta la circolazione di una corrente massima secondo le specifiche tecniche dello strumento (vedere § 10.1). Ciò potrebbe causare l'intervento di eventuali protezioni magnetotermiche o differenziali a correnti di intervento inferiori

Fig. 26: Test L-N/L1-PE per sistemi Monofase/Bifase con cavi e puntale remoto Black Negro

Fig. 27: Test L-N/L1-PE per sistemi Trifase con cavi singoli e puntale remoto

Fig. 28: Test L1-L2 per sistemi Trifase con cavi singoli e puntale remoto

Fig. 29: Test L-PE/L1-PE per sistemi Trifase (no N) mediante cavi singoli e puntale remoto Black Negro

Fig. 30: Test L1-PE per sistemi IT mediante cavi singoli e puntale remoto

Fig. 32: Test 2 fili L1-PE per sistemi Monofase/Bifase con cavi e puntale remoto

Fig. 33: Test L1-PE a 2 fili per sistemi Trifase con cavi singoli e puntale remoto

Fig. 34: Test L1-L2 a 3 fili per sistemi Bifase con cavi singoli e puntale remoto

6.7.1. Modi di prova

La protezione delle linee elettriche è parte essenziale di un progetto per garantirne la corretta funzionalità ed evitare danni a persone o cose. A tal fine, le linee guida di sicurezza impongono ai progettisti elettrici anche di progettare l'impianto elettrico i modo da raggiungere:

- 1. La protezione dai cortocircuiti, ovvero il potere di interruzione del dispositivo di protezione non deve essere inferiore alla presunta corrente di cortocircuito nel punto in cui il dispositivo è installato
- 2. La protezione dai contatti indiretti

Per verificare le condizioni sopra riportate lo strumento dispone delle seguenti funzioni:

- Ra ÷ (Ut) Verifica della protezione dai contatti indiretti In base al tipo di sistema di distribuzione (TT, TN, IT) impostato dall'utente, lo strumento esegue la misura e verifica la condizione imposta dalle linee guida. Qualora venga raggiunto, lo strumento fornisce esito positivo (vedere § 12.6, § 12.8 e § 12.9)
 - Br.Cap Verifica del potere di interruzione della protezione Lo strumento rileva il valore dell'impedenza di linea a monte del punto di misura, calcola il valore massimo della corrente di cortocircuito e dà esito positivo se il valore è inferiore al limite impostato dall'utente (vedere § 12.5)
 - TripT Controllo del coordinamento delle protezioni Lo strumento rileva il valore dell'impedenza di linea a monte del punto di misura, calcola il valore minimo della corrente di cortocircuito e il corrispondente valore del tempo di intervento (t) del dispositivo di protezione e fornisce esito positivo se il valore è inferiore rispetto al limite impostato dall'utente (vedere § 12.10)
 - **STD** Test generico

La tabella seguente riassume le possibili misure eseguibili a seconda del tipo di impianto (TT, TN e IT), delle modalità selezionate e delle relazioni che definiscono i valori limite

EASYTEST - COMBI519

		TT	TN	IT
	Modo	Condizioni per esito OK	Condizioni per esito OK	Condizioni per esito OK
L-L L1-L2	STD	Nessun esito	Nessun esito	Nessun esito
	Br.Cap	lsc L-L max < BC lsc L1-L2 max < BC	lsc L-L max < BC lsc L1-L1 max < BC	lsc L-L max < BC lsc L1-L2 max < BC
	TripT	(IscL-Lmin 2P) →Tmax → Tmax < Tlim (IscL1-L2min 2P) →Tmax → Tmax < Tlim	(IscL-L min 2P) →Tmax →Tmax < Tlim (IscL1-L2 min 2P) →Tmax →Tmax < Tlim	(IscL-Lmin 2F)→Tmax→Tmax< Tlim (IscL1-L2min 2F)→Tmax→Tmax< Tlim
	Ut			
	STD	Nessun esito	Nessun esito	Nessun esito
	Br.Cap	lsc L-N max < BC	lsc L-N max < BC	lsc L-N max < BC
L-N	TripT	(Isc L-N min) →Tmax → Tmax < Tlim	(Isc L-N min) →Tmax → Tmax < Tlim	(Isc L-N min) →Tmax → Tmax < Tlim
	Ut			
	STD		Nessun esito	
L-PE	Br.Cap		Isc L-PE max< BC Isc L1-PE max< BC	
L1-PE	TripT		(Ipfc L-PE min) →Tmax → Tmax < Tlim (Ipfc L1-PE min) →Tmax → Tmax < Tlim	
	Ut		ZL-PE < ZLimt (UK) ZL1-PE < ZLimt (USA)	Utmeas < Utlim
Ra 十	Ut 2Fili	Utlim/Ra meas = lsc L-PE MIN > ldn (RCD)	ZLPEmis < ZLIM (UK, AUS/NZ) ZL1PEmis < ZLIM (USA) Ra mis x Idn < Ut lim (altre Nazioni)	
	Ut 3Fili		ZLPEmeas < ZLIM (UK, AUS/NZ) ZL1PEmeas < ZLIM (USA) Ra meas x Idn < Ut lim (altre Nazioni)	

Tabella 2: Condizioni di esito OK in funzione dei vari parametri di prova

In cui:

Cella vuota	Modo non disponibile per quella particolare combinazione di sistema elettrico
Isc L-L_Min2P	Corrente di cortocircuito presunta minima bifase L-L (sistema L-N-PE)
Isc L1-L2_Min2P	Corrente di cortocircuito presunta minima bifase L1-L2 (sistema L-L-PE)
Isc L-N_Max	Corrente di cortocircuito presunta massima L-N (sistema L-N-PE)
Isc L-N_Min	Corrente di cortocircuito presunta minima L-N (sistema L-N-PE)
Isc L-PE_Max	Corrente di cortocircuito presunta massima L-PE (sistema L-N-PE)
Isc L1-PE_Max	Corrente di cortocircuito presunta massima bifase L1-PE (sistema L-L-PE)
Isc L-PE_Min	Corrente di cortocircuito presunta minima L-PE (sistema L-N-PE)
Isc L1-PE_Min	Corrente di cortocircuito presunta minima bifase L1-PE (sistema L-L-PE)
BC	Potere di interruzione del dispositivo di protezione - kA)
Z Lim	Massimo limite consentito dell'impedenza in base al tipo di protezione
Tmax	Tempo massimo di intervento del dispositivo di protezione
Tlim	Tempo limite di estinzione del guasto da parte della protezione impostata dall'utente
Ut meas	Tensione di contatto misurata
Ut lim	Tensione di contatto limite (25V o 50V)
Ra meas	Resistenza globale di terra misurata
Idn	Corrente di intervento nominale del dispositivo di protezione RCD
lpsc	Corrente di cortocircuito presunta
lpfc	Corrente di guasto presunta

6.7.2. Calibrazione puntali di misura (ZEROLOOP)

Per ottenere risultati migliori, <u>si raccomanda</u> di eseguire la calibrazione preliminare dei cavi di prova o del cavo con spina Shuko utilizzando l'accessorio **ZEROLOOP** prima di eseguire il test. In questo modo lo strumento sottrae automaticamente la resistenza dei cavi di test, fornendo il risultato effettivo a display. A titolo di esempio, la procedura per la modalità LOOP STD generica è descritta di seguito ed è estendibile a tutti gli altri casi.

 Premere il tasto MENU, spostare il cursore su LOOP nel LOOP menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Selezionare la funzione "CAL" Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato

 Inserire l'accessorio metallico ZEROLOOP nei tre connettori a banana dei cavi di misura (L-N-PE) o nei connettori metallici della spina Shuko (in modo diverso in base al paese di utilizzo) come mostrato nella seguente Tabella 3

			8000			do	
Cavi	Spina	Spina	Spina	Spina	Spina	Spina	Spina
misura	SHUKO	UK	ITA	SWI	DEN	AUS/CHN	USA

Tabella 3: Collegamento accessorio ZEROLOOP

 Premere il tasto GO/STOP per avviare la calibrazione. Nei LOOP campi RL, RN e RPE è mostrata per pochi secondi la resistenza dei puntali. Questo valore sarà sottratto automaticamente dallo strumento alla fine della misura si Loop

Lo strumento visualizza il simbolo "▶ø◄" ad indicare l'esito positivo della calibrazione dei cavi di misura (**Rcal <1**Ω) e sul display compare la videata a lato

1	TN				ø∢
<u>,</u>	RL	=	0.051	Ω	
:	RN	=	0.013	Ω	
	RPE	=	0.068	Ω	
)	FREQ. = VL-PE=(= 0.00 DV)Hz VL-N	=0V	
;					
	Cali	brazi	one 5.1	.30K	
	CAL				
	FUNZ				

15/10 - 18:04

Tornare alla videata principale di misura. Notare il simbolo "▶ø◀" che indica la corretta calibrazione dei puntali e procedere con le misure descritte nei paragrafi successivi

Il valore della resistenza dei puntali/spinaShuko viene LOOP 4. 15/10 - 18:04 mantenuto dallo strumento fino all'operazione di reset ΤN RL eseguita dall'utente (ad esempio per l'inserimento di cavi - - -Ω = RN - - -= Ω di diversa lunghezza). RPE - - -= Ω Per eseguire il reset del valore di calibrazione salvato, FREQ. = 0.00Hz rimuovere l'accessorio ZEROLOOP e premere il tasto VL-PE=0V VL-N=0V GO/STOP. Il simbolo "►ø◄" è rimosso e la videata a lato Reset Calib. compare sul display CAL FUNZ

А

Ο

6.7.3. Modo STD – Test generico

Questa modalità esegue la misura dell'impedenza e il calcolo della corrente di cortocircuito presunta senza applicare alcuna valutazione. Pertanto, al termine della prova, lo strumento non fornisce alcun esito.

- Premere il tasto MENU, spostare il cursore su LOOP nel LOOP 1. 15/10 - 18:04 menu principale tramite i tasti freccia (\blacktriangle , ∇) e confermare TΝ lpfc con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato in caso di ZL-PE sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni FREQ. = 0.00Hz indicate cambiano in VL1-PE e VL1-L2. Selezionare il VL-PE=0V VL-N=0V paese "Europa" (vedere § 5.1.2), le opzioni "TT, TN o IT", "25 o 50V", "50Hz o 60Hz", il sistema "L-N-PE" o "L-L-PE" e la tensione di riferimento nelle impostazioni generali L-PE STD MODE FUNZ dello strumento (vedere § 5.1.3).
- 2. Usare i tasti \blacktriangleleft , \triangleright per selezionare il parametro da modificare e i tasti \blacktriangle , \triangledown per modificare il valore del parametro:
 - \succ FUNZ \rightarrow il tasto virtuale permette di impostare la modalità di misura dello strumento, che può essere: L-N, L-L o L-PE (sistemi Monofase/Trifase) oppure L1-PE, L1-L2 (sistemi Bifase)
 - > MODE \rightarrow il tasto virtuale permette di impostare la modalità di funzionamento dello strumento. Selezionare l'opzione STD
- 3. Se possibile, scollegare tutti i carichi collegati a valle del punto misurato in quanto l'impedenza di queste utenze potrebbe falsare i risultati del test. Eseguire la calibrazione preliminare dei puntali come descritto al § 6.7.2
- 4. Inserire i connettori verde, blu e nero del cavo shuko a tre pin nei corrispondenti conduttori di ingresso B3, B4 e B1 dello strumento. In alternativa, utilizzare i singoli cavi e applicare le relative clip a coccodrillo alle estremità libere dei cavi. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel cavo di ingresso B1. Collegare la spina Shuko, i terminali a coccodrillo o il puntale remoto alla rete elettrica in accordo alle Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29, Fig. 31, Fig. 32, Fig. 33 o Fig. 34
- 5. Notare la presenza dei corretti valori di tensione tra L-N e LOOP 15/10 - 18:04 ►Ø◀ L-PE corrispondenti alle selezioni effettuate in fase ΤN А lpfc iniziale come mostrato nella videata a lato. ZL-PE Ω - - -FREQ. = 50.00Hz VL-PE=231V VL-N=232V I-PF STD

FUNZ MODE

EASYTEST - COMBI519

►Ø<

A

Ω

6. Premere il tasto GO/STOP sullo strumento, il tasto LOOP START sul puntale remoto o la funzione AutoStart (vedere § 5.1.5). Lo strumento inizierà la misura e sul display apparirà il messaggio "Misura..."

Durante tutta questa fase non scollegare i cavi di misura dello strumento dal sistema in prova. La seguente videata appare a display

7. Nella parte alta del display è mostrato il valore della RC corrente di cortocircuito presunta (Ipfc), mentre nella TN parte inferiore è mostrata l'impedenza ZL-PE di Linea/Loop

La corrente di cortocircuito presunta standard (Std) (Isc) viene calcolata utilizzando le seguenti formule:

 $I_{SCL-PE} = \frac{U_{NOM}}{Z_{L-PE}} \qquad I_{SCL-N} = \frac{U_{NOM}}{Z_{L-N}} \qquad I_{SCL-L} = \frac{\sqrt{3}U_{NOM}}{Z_{L-L}}$

Z_{MEAS} = Impedenza Loop L-L,L-N,L-PE misurata U_{NOM} = tensione nominale (in funzione del sistema)

8. Premere il tasto SAVE per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto ESC/MENU per uscire dalla schermata senza salvare e tornare al menu principale

FREQ. = 50.00Hz
VL-PE=231V VL-N=232V

Misura...
L-PE STD
FUNZ MODE
RCD 15/10 - 18:04
TN
$$\sim 0$$

Ipfc = 163 A
ZL-PE = 1.41 Ω

FREQ. = 50.00Hz VL-PE=231V VL-N=232V L-PE STD FUNZ MODE

15/10 - 18:04 ΤN lpfc ZL-PE - - -FR VL-

6.7.4. Modo Br.Cap – Verifica potere di interruzione del dispositivo di protezione

 Premere il tasto MENU, spostare il cursore su LOOP nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato in caso di sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni indicate cambiano in VL1-PE e VL1-L2. Selezionare il paese "Europa" (vedere § 5.1.2), le opzioni "TT, TN o IT", "25 o 50V", "50Hz o 60Hz" e la tensione di riferimento nelle impostazioni generali dello strumento (vedere § 5.1.3)

)	LOOP	15/10 – 18:04					
Э	TN						
a	I^{\max}	= ·		А			
i	• psc			~			
2	ZL-L	= ·		Ω			
i							
	FREQ. =	= 50.00	Hz				
:	VL-PE=	0V	VL-L	_=0V			
		Dr Con	154	٨			
C	L-L	ы.сар	I SK	4			
-	FUNZ	MODE	Lin	1			

- 2. Usare i tasti ◀, ► per selezionare il parametro da modificare e i tasti ▲, ▼ per modificare il valore del parametro:
 - FUNZ → il tasto virtuale permette di impostare la modalità di misura dello strumento, che può essere: L-N, L-L o L-PE (sistemi Monofase/Trifase) oppure L1-PE, L1-L2 (sistemi Bifase)
 - MODE → il tasto virtuale permette di impostare la modalità di funzionamento dello strumento. Selezionare l'opzione Br.Cap
 - Lim → il tasto virtuale permette di impostare la massima corrente di intervento espressa in "kA" che la protezione deve interrompere nel campo: 0.1kA ÷ 999kA
- 3. Se possibile, scollegare tutti i carichi collegati a valle del punto misurato in quanto l'impedenza di queste utenze potrebbe falsare i risultati del test. <u>Eseguire la calibrazione preliminare dei puntali come descritto al § 6.7.2</u>
- 4. Inserire i connettori verde, blu e nero del cavo shuko a tre pin nei corrispondenti conduttori di ingresso B3, B4 e B1 dello strumento. In alternativa, utilizzare i singoli cavi e applicare le relative clip a coccodrillo alle estremità libere dei cavi. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel cavo di ingresso B1. Collegare la spina Shuko, i terminali a coccodrillo o il puntale remoto alla rete elettrica in accordo alle Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29, Fig. 31, Fig. 32, Fig. 33 o Fig. 34

5.	Notare la presenza dei corretti valori di tensione tra L-L e	LOOP	15/10	- 18:04	
	L-PE corrispondenti alle selezioni effettuate in fase iniziale come mostrato nella videata a lato	TN I_{psc}^{max} ZL-L	= -	/ (
		L-L E	23V 3r.Cap	VL-L=3	87V
		FUNZ	IODE	LIM	

6.

7.

8.

= 0.07

NO OK

ZL-L

L-L

FREQ. = 50.00Hz

Br.Cap

VL-PE=223V

FUNZ MODE

Ω

VL-L=387V

6.0kA

Lim

Premere il tasto GO/STOP sullo strumento, il tasto START sul puntale remoto o la funzione AutoStart (vedere § 5.1.5). Lo strumento inizierà la misura e sul display apparirà il messaggio " Misura …".	$\begin{array}{c cccc} LOOP & 15/10 - 18:04 \\ \hline TN & $
Durante tutta questa fase non scollegare i cavi di misura dello strumento dal sistema in prova. La seguente videata appare a display	FREQ. = 50.00Hz VL-PE=223V VL-L=387V Misura L-L Br.Cap 15kA FUNZ MODE Lim
In caso di risultato positivo (IpscMAX <lim) viene<br="">visualizzato a display il messaggio di esito "OK"</lim)>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
In caso di risultato negativo (IpscMAX>Lim) viene visualizzato a display il messaggio di esito " NO OK "	$LOOP 15/10 - 18:04$ TN $I_{psc}^{max} = 7236 \text{ A}$

6.7.5. TripT – Verifica del coordinamento delle protezioni

 Premere il tasto MENU, spostare il cursore su LOOP nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato in caso di sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni indicate cambiano in VL1-PE e VL1-L2. Selezionare il paese "Europa" (vedere § 5.1.2), le opzioni "TT, TN o IT", "25 o 50V", "50Hz o 60Hz" e la tensione di riferimento nelle impostazioni generali dello strumento (vedere § 5.1.3)

LOOP	15/10	– 18:04	
TN			
I^{\min}	= ·	A	L Contraction of the second seco
• psc			
ZL-L	= ·	··· Ω	2
		7	
VI - PF = 0	0.00H	VI -I =0	V
	, v	VL L-0	v
L-L	TripT	16A	0.2s
FUNZ	MODE	MCB-C	Tempo

NOTA: per paesi diversi da "Europa" i riferimenti su MCB e Fusibile disponibili possono cambiare

- 2. Usare i tasti ◀, ► per selezionare il parametro da modificare e i tasti ▲, ▼ per modificare il valore del parametro:
 - FUNZ → il tasto virtuale permette di impostare la modalità di misura dello strumento, che può essere: L-N, L-L o L-PE (sistemi Monofase/Trifase) oppure L1-PE, L1-L2 (sistemi Bifase)
 - MODE → il tasto virtuale permette di impostare la modalità di funzionamento dello strumento. Selezionare l'opzione TripT
 - ➤ Tipo di protezione → il tasto virtuale permette di impostare il tipo di protezione (Fusibile di tipo gG, aM o magnetotermico MCB curve B, C, D, K) e le rispettive correnti nominali considerando i seguenti valori disponibili:

MCB curva B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

MCB curva C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A

MCB curve D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

Fusibile gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A

Fusibile aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A, 160A, 200A, 250A, 315A, 400A, 500A, 630A

- ➤ Tempo → il tasto virtuale permette di impostare il tempo di intervento della protezione tra le opzioni: 0.1s, 0.2s, 0.4s, 1s, 5s premere il tasto SALVA per salvare i parametri selezionati e tornare alla videata di misura
- 3. Se possibile, scollegare tutti i carichi collegati a valle del punto misurato in quanto l'impedenza di queste utenze potrebbe falsare i risultati del test. <u>Eseguire la calibrazione preliminare dei puntali come descritto al § 6.7.2</u>
- 4. Inserire i connettori verde, blu e nero del cavo shuko a tre pin nei corrispondenti conduttori di ingresso B3, B4 e B1 dello strumento. In alternativa, utilizzare i singoli cavi e applicare le relative clip a coccodrillo alle estremità libere dei cavi. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel cavo di ingresso B1. Collegare la spina Shuko, i terminali a coccodrillo o il puntale remoto alla rete elettrica in accordo alle Fig. 25, Fig. 26, Fig. 27, Fig. 28 Fig. 29, Fig. 31, Fig. 32, Fig. 33 o Fig. 34

5. Notare la presenza dei corretti valori di tensione tra L-L e L-PE corrispondenti alle selezioni effettuate in fase iniziale come mostrato nella videata a lato

è	LOOP	15/10	- 18:04	
è	ΤN			►Ø◀
	I^{\min}	=	A	
	• psc		0	
	ZL-L	=	02	
	FREQ.	= 50.00	Hz	
	VL-PE=	=223V	VL-L=38	37V
	-	TripT	16A	0.2s
	FUNZ	MODE	MCB-C	Tempo

15/10 - 18:04

- - -

Misura...

16A

=

=

TripT

FUNZ MODE MCB-C

 $I_{\it psc}^{\rm min}$

ZL-L

L-L

►Ø◄

0.2s

Tempo

Δ

Ω

VL-L=387V

6. Premere il tasto GO/STOP sullo strumento, il tasto LOOP START sul puntale remoto o la funzione AutoStart TN (vedere § 5.1.5). Lo strumento inizierà la misura e sul display apparirà il messaggio "Misura ... ".

Durante tutta questa fase non scollegare i cavi di misura FREQ. = 50.00Hz dello strumento dal sistema in prova. La seguente videata VL-PE=223V appare a display

7. In caso di esito positivo (corrente di cortocircuito minima interrotta dal dispositivo di protezione entro il tempo indicato dalle selezioni effettuate), lo strumento visualizza il messaggio "OK" e la videata a lato

ł	LOOP	15/10	15/10 – 18:04				
)	ΤN				►ø◀		
ł	I^{\min}	=	212	A			
-	r _{psc} ZL-L	=	1.03	Ω	1		
	FREQ. = 50.00Hz VL-PE=223V VL-L=387V						
	OK						
	L-L	TripT	16A		0.2s		
	FUNZ	MODE	MCB-C	2	Tempo		

8. In caso di esito negativo (corrente di cortocircuito minima NON interrotta dal dispositivo di protezione entro il tempo indicato dalle selezioni effettuate), lo strumento visualizza il messaggio "NON OK" e la videata a lato

LOC)P ′	15/10	- 18:04	-		
ΤN					►Ø◀	
1 ^m	in	=	1681	A		
p_{s}	SC			~		
ZL·	-L	=	0.13	Ω		
FRE	Q. = 5	0.00	Hz			
VL-F	'E=22	3V	VL-L=	-38	37V	
NON OK						
L-L	. Ti	ripT	16A		0.2s	
FUN	ZM	DDE	MCB-0	С	Tempo	

6.7.6. Test Ra + 2-fili – Verifica della protezione dai contatti indiretti

 Premere il tasto MENU, spostare il cursore su LOOP nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato in caso di sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni indicate cambiano in VL1-PE e VL1-L2 Selezionare il paese "Europa" (vedere § 5.1.2), le opzioni "TN", "25 o 50V", "50Hz o 60Hz" e la tensione di riferimento nelle impostazioni generali dello strumento (vedere § 5.1.3). NOTA: per paesi diversi da "Europa" i riferimenti su MCB e Fusibile disponibili possono cambiare

I	LOOP	15/10	15/10 – 18:04				
è	ΤN						
)	I^{\min}	=		A			
)	• pfc			_			
	ZL-PE	=		Ω			
-	FREQ.	= 0.00H	Z				
:	VL-PE=	=0V					
! :							
I	Ra∔	2Fili	16A		0.2s		
)	FUNZ	MODE	MCB	-C	Tempo		
				-			

- 2. Usare i tasti ◀, ► per selezionare il parametro da modificare e i tasti ▲, ▼ per modificare il valore del parametro:
 - FUNZ → il tasto virtuale permette di impostare la modalità di misura dello strumento, che può essere: Ra +
 - MODE → il tasto virtuale permette di impostare la modalità di funzionamento dello strumento. Selezionare l'opzione 2Fili
 - ➤ Tipo di protezione → il tasto virtuale permette di impostare il tipo di protezione (Fusibile di tipo gG, aM o magnetotermico MCB curve B, C, D, K) e le rispettive correnti nominali considerando i seguenti valori disponibili: MCB curva B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A,

MCB curva B \rightarrow 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

MCB curva C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A

MCB curve D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

Fusibile gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A

Fusibile aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A

- ➤ Tempo → il tasto virtuale permette di impostare il tempo di intervento della protezione tra le opzioni: 0.1s, 0.2s, 0.4s, 1s, 5s premere il tasto SALVA per salvare i parametri selezionati e tornare alla videata di misura
- 3. Se possibile, scollegare tutti i carichi collegati a valle del punto misurato in quanto l'impedenza di queste utenze potrebbe falsare i risultati del test. Eseguire la calibrazione preliminare dei puntali come descritto al § 6.7.2
- 4. Inserire i connettori verde, blu e nero del cavo shuko a tre pin nei corrispondenti conduttori di ingresso B3, B4 e B1 dello strumento. In alternativa, utilizzare i singoli cavi e applicare le relative clip a coccodrillo alle estremità libere dei cavi. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel cavo di ingresso B1. Collegare la spina Shuko, i terminali a coccodrillo o il puntale remoto alla rete elettrica in accordo alle Fig. 31, Fig. 32 o Fig. 33

5. Notare la presenza dei corretti valori di tensione tra L-PE LOOP 15/10 - 18:04 ΤN ►Ø◄ corrispondente alle selezioni effettuate in fase iniziale I^{\min} A come mostrato nella videata a lato pfc Ω ZL-PE = - - -FREQ. = 50.00Hz VL-PE=223V Ra÷ 2Fili 16A 0.2s FUNZ MODE MCB-C Tempo Premere il tasto GO/STOP sullo strumento, il tasto LOOP 15/10 - 18:04 6. START sul puntale remoto o la funzione AutoStart TΝ ►Ø◄ А $I_{\it pfc}^{\rm min}$ (vedere § 5.1.5). Lo strumento inizierà la misura e sul display apparirà il messaggio "Misura ... ". Ω ZL-PE Durante tutta questa fase non scollegare i cavi di misura FREQ. = 50.00Hz dello strumento dal sistema in prova. La seguente VL-PE=223V videata appare a display Misura... Ra∔ 2Fili 16A 0.2s FUNZ MODE MCB-C Tempo In caso di esito positivo (ZL-PE ≤ impedenza limite LOOP 7. 15/10 - 18:04 relativa al dispositivo di protezione entro il tempo TΝ ►Ø◄ J^{\min} А 1213 specificato - vedere § 12.10), lo strumento visualizza il = pfc messaggio "OK" e la videata a lato 0.18 Ω ZL-PE = FREQ. = 50.00Hz VL-PE=223V OK 16A Ra÷ 2Fili 0.2s FUNZ MODE MCB-C Tempo 8. In caso di esito negativo (ZL-PE > impedenza limite LOOP 15/10 - 18:04 ►Ø◀ ΤN relativa al dispositivo di protezione entro il tempo A 88 $I_{\it pfc}^{\rm min}$ specificato - vedere § 12.10), lo strumento visualizza il messaggio "NO OK" e la videata a lato Ω 2.08 ZL-PE = FREQ. = 50.00HzVL-PE=223V NO OK Ra∔ 2Fili 16A 0.2s FUNZ MODE MCB-C Tempo 9. Premere il tasto SAVE per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto ESC/MENU per uscire dalla schermata senza salvare e tornare al menu principale

6.7.7. Test Ra + 3-fili - Verifica della protezione dai contatti indiretti

 Premere il tasto MENU, spostare il cursore su LOOP nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato in caso di sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni indicate cambiano in VL1-PE e VL1-L2 Selezionare il paese "Europa" (vedere § 5.1.2), le opzioni "TN", "25 o 50V", "50Hz o 60Hz" e la tensione di riferimento nelle impostazioni generali dello strumento (vedere § 5.1.3). NOTA: per paesi diversi da "Europa" i riferimenti su MCB e Fusibile disponibili possono cambiare

LOOP	15/10 – 18:04				
ΤN					
lsc=	- A	Z L - N =	Ω		
lfc=	- A	ZL-PE=	=Ω		
FREQ=0.00Hz VL-N=0V VL-PE=0V					
Ra ↓	3Fili	16A	0.2s		
FUNZ	MODE	MCB-C	Tempo		

- 2. Usare i tasti ◀, ► per selezionare il parametro da modificare e i tasti ▲, ▼ per modificare il valore del parametro
 - FUNZ → il tasto virtuale permette di impostare la modalità di misura dello strumento, che può essere: Ra +
 - ➤ MODE → il tasto virtuale permette di impostare la modalità di funzionamento dello strumento. Selezionare l'opzione 3Fili
 - ➤ Tipo di protezione → il tasto virtuale permette di impostare il tipo di protezione (Fusibile di tipo gG, aM o magnetotermico MCB curve B, C, D, K) e le rispettive correnti nominali considerando i seguenti valori disponibili:
 MCB curva B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
 MCB curva C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A
 MCB curve D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
 MCB curve D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
 Fusibile gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A
 Fusibile aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 10A, 12A, 15A, 16A, 20A, 25A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 20A, 25A, 315A, 400A, 500A, 630A, 800A, 1000A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A
 - ➤ Tempo → il tasto virtuale permette di impostare il tempo di intervento della protezione tra le opzioni: 0.1s, 0.2s, 0.4s, 1s, 5s premere il tasto SALVA per salvare i parametri selezionati e tornare alla videata di misura
- 3. Se possibile, scollegare tutti i carichi collegati a valle del punto misurato in quanto l'impedenza di queste utenze potrebbe falsare i risultati del test. <u>Eseguire la calibrazione preliminare dei puntali come descritto al § 6.7.2</u>
- 4. Inserire i connettori verde, blu e nero del cavo shuko a tre pin nei corrispondenti conduttori di ingresso B3, B4 e B1 dello strumento. In alternativa, utilizzare i singoli cavi e applicare le relative clip a coccodrillo alle estremità libere dei cavi. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel cavo di ingresso B1. Collegare la spina Shuko, i terminali a coccodrillo o il puntale remoto alla rete elettrica in accordo alle Fig. 25, Fig. 26, Fig. 27, Fig. 28 o Fig. 29

10.04

5. Notare la presenza dei corretti valori di tensione tra L-PE AUTO 45/40 e L-N corrispondenti alle selezioni effettuate in fas iniziale come mostrato nella videata a lato

	AUTO	15/10	- 18:04	
se	ΤN			
	lsc=	- A	Z L - N =	Ω
	lfc=	- A	ZL-PE=	Ω
	FREQ VL-N=2	=50.00 232V)Hz VL-PE=2	231V
	Ra∔	3Fili	16A	0.2s
	FUNZ	MODE	MCB-C	Tempo

0	AUTO	15/10	- 18:04	
rt	ΤN			
IL	lsc=	- A	ZL-N=	Ω
	lfc=	- A 2	ZL-PE=	Ω
a a	FREQ VL-N=2	=50.00 232V)Hz /L-PE=:	231V
		Misu	ıra	
	Ra∔	3Fili	16A	0.2s
	FUNZ	MODE	MCB-C	Tempo

AUTO	15/10	- 18:04				
ΤN						
lsc=1	365 A	Z L - N =	0.16Ω			
lfc=12	213A Z	L-PE=	0.18Ω			
FREQ=50.00Hz VL-N=232V VL-PE=231V						
OK						
Ra÷	3Fili	16A	0.2s			
FUN7	MODE	MCB-C	Tempo			

8. In caso di esito negativo (Z _{L-PE} > impedenza limite	AUTO	15/10	– 18:04	
relativa al dispositivo di protezione entro il tempo	IN			
messaggio "NON OK" e la videata a lato	lsc=89	A ZL	- N = 2 . 0	6Ω
	lfc=88	A ZL-	PE=2.0	Ω8
	FREQ= VL-N=2	=50.00 32V \)Hz /L-PE=2	231V
	NON OK			
	Ra <mark>÷</mark>	3Fili	16A	0.2s
	FUNZ	MODE	MCB-C	Tempo

9. Premere il tasto SAVE per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto ESC/MENU per uscire dalla schermata senza salvare e tornare al menu principale

6. Premere il tasto GO/STOP sullo strumento, il tasto START sul puntale remoto o la funzione AutoStar (vedere § 5.1.5). Lo strumento inizierà la misura e su display apparirà il messaggio "Misura ... ".

Durante tutta questa fase non scollegare i cavi di misura dello strumento dal sistema in prova. La seguente videata appare a display

7. In caso di esito positivo (Z_{L-PE} ≤ impedenza limite relativa al dispositivo di protezione entro il tempo specificato - vedere § 12.10), lo strumento visualizza il messaggio "OK" e la videata a lato

6.7.8. Verifica della protezione contro contatti indiretti (sistemi IT)

 Premere il tasto MENU, spostare il cursore su LOOP nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato in caso di sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni indicate cambiano in VL1-PE e VL1-L2 Selezionare il paese "Europa" (vedere § 5.1.2), le opzioni "IT", "25 o 50V", "50Hz o 60Hz" e la tensione di riferimento nelle impostazioni generali dello strumento (vedere § 5.1.3)

3					
ł	LOOP	15/1	0 – 18:0	4	
Э	IT				
a	lpfc	=		mΑ	
i	1.1+	_		V	
כ	01	-		v	
i	FREO -	. 0 001	47		
	VL-PE=(. 0.001)V	VL-N	V0=V	
i				-	
li					
C	L-PE	Ut			
	FUNZ	MODE			

- 2. Usare i tasti ◀, ► per selezionare il parametro da modificare e i tasti ▲, ▼ per modificare il valore del parametro:
 - FUNZ → il tasto virtuale permette di impostare la modalità di misura dello strumento, che può essere: L-PE (sistemi Monofase/Trifase) oppure L1-PE (sistemi Bifase)
 - MODE → il tasto virtuale permette di impostare la tensione di contatto limite Ut (vedere § 5.1.3)

premere il tasto SALVA per salvare i parametri e tornare alla videata di misura

- 3. Se possibile, scollegare tutti i carichi collegati a valle del punto misurato in quanto l'impedenza di queste utenze potrebbe falsare i risultati del test. Eseguire la calibrazione preliminare dei puntali come descritto al § 6.7.2
- 4. Inserire i connettori verde, blu e nero del cavo shuko a tre pin nei corrispondenti conduttori di ingresso B3, B4 e B1 dello strumento. In alternativa, utilizzare i singoli cavi e applicare le relative clip a coccodrillo alle estremità libere dei cavi. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel cavo di ingresso B1. Collegare la spina Shuko, i terminali a coccodrillo o il puntale remoto alla rete elettrica in accordo alla Fig. 30
- 5. Notare la presenza dei corretti valori di tensione tra L-PE LOOP 15/10 18:04 e L-N come mostrato nella videata a lato

 Premere il tasto GO/STOP sullo strumento, il tasto LC START sul puntale remoto o la funzione AutoStart IT (vedere § 5.1.5). Lo strumento inizierà la misura e sul display apparirà il messaggio "Misura...".

Durante tutta questa fase non scollegare i cavi di misura dello strumento dal sistema in prova. La seguente videata appare a display

Misura					

In caso di esito **positivo** (tensione di contatto nel punto LC
 <50V o <25V), lo strumento visualizza il messaggio "OK"
 IT
 e la videata a lato che contiene il valore della corrente di primo guasto misurata, espressa in mA (vedere § 12.9)

)	LOOP	15/10	- 18	3:04	
,	IT				
i	lpfc	=	83	mA	
	Ut	=	1	V	
	FREQ.	= 50.00	Hz		
	VL-PE=	-232V	VL	-N=234	V
		C)K		
	L-PE	Ut			
	FUNZ	MODE			

- 8. In caso di esito negativo (tensione di contatto nel punto LOOP 15/10 18:04
 >50V o >25V), lo strumento visualizza il messaggio "NO IT OK" e la videata a lato
 - Ipfc
 =
 >999
 mA

 Ut
 =
 >50
 V

 FREQ.
 =
 50.00Hz
 VL-PE=232V
 VL-N=234V

 NO OK
 L-PE
 Ut
 Ut
 Ut
 Ut

 FUNZ
 MODE
 Ut
 Ut
 Ut
 Ut

9. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

6.7.9. Verifica della protezione contro contatti indiretti (sistemi TT)

 Premere il tasto MENU, spostare il cursore su LOOP nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato in caso di sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni indicate cambiano in VL1-PE e VL1-L2. Selezionare il paese "Europa" (vedere § 5.1.2), le opzioni "TT", "25 o 50V", "50Hz o 60Hz" e la tensione di riferimento nelle impostazioni generali dello strumento (vedere § 5.1.3).

-							
e	LOOP						
е	TT						
а	RA	=		Ω			
li	1.1+	_		ν,			
0	01	-		v			
il o	FREQ. VL-PE=	= 0.00H ⊧0V	Iz				
-	Ra ↓	2Fili	30mA				
	FUNZ	MODE	lΔn				

- 2. Usare i tasti ◀, ► per selezionare il parametro da modificare e i tasti ▲, ▼ per modificare il valore del parametro:
 - FUNZ → il tasto virtuale permette di impostare la modalità di misura dello strumento, che può essere Ra +
 - ▶ **MODE** \rightarrow Modo **2-Wire** fisso
 - ▷ I∆n → II tasto virtuale consente di impostare il valore nominale della corrente di intervento dell'RCD, che può essere: 6mA, 10mA, 30mA, 100mA, 300mA, 500mA, 650mA, 1000mA

premere il tasto **SALVA** per salvare i parametri selezionati e tornare alla videata di misura

- 3. Se possibile, scollegare tutti i carichi collegati a valle del punto misurato in quanto l'impedenza di queste utenze potrebbe falsare i risultati del test. <u>Eseguire la calibrazione preliminare dei puntali come descritto al § 6.7.2</u>
- 4. Inserire i connettori verde, blu e nero del cavo shuko a tre pin nei corrispondenti conduttori di ingresso B3, B4 e B1 dello strumento. In alternativa, utilizzare i singoli cavi e applicare le relative clip a coccodrillo alle estremità libere dei cavi. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel cavo di ingresso B1. Collegare la spina Shuko, i terminali a coccodrillo o il puntale remoto alla rete elettrica in accordo alle Fig. 31, Fig. 32 o Fig. 33

5.	Notare la presenza dei corretti valori di tensione tra L-PE		15/10	- 18:04	
	Notare la presenza dei corretti valori di tensione tra L-PE Lo come mostrato nella videata a lato	TT RA	= ·		Ω
		Ut	= ·		V
		FREQ. : VL-PE=	= 50.00 232V	Hz	
		Ra ÷ FUNZ	2Fili MODE	30mA I∆n	

6. Premere il tasto GO/STOP sullo strumento, il tasto LOOF	
	15/10 – 18:04
START sul puntale remoto o la funzione AutoStart	
(vedere $\&$ 5.1.5) Lo strumento inizierà la misura e sul R _A	= Ω
dienlov opporirà il moccoggio "Miguro"	
	= V
Durante tutta questa fase non scollegare i cavi di misura	= 50.00Hz
dello strumento dal sistema in prova. La seguente videata VI -PF	=232V
appare a display	
	Misura…
Ra÷	2Fili 30mA
FUNZ	MODE IAn
7 In caso di esito positivo (resistenza globale di terra R	15/10 - 18:04
\sim (litim / lAn) lo strumento visualizza il messaggio " OK " IT	
<(O(IIII / IZII), IO SII UITIETIIO VISUAIIZZA II THESSAGGIO OK	= 346 0
e la videata a lato che contiene il valore della tensione di	
contatto nel display secondario Ut	= 10.4 V
FREQ	- 50 00Hz
VI -PF	-232\/
	-2021
	ОК
Ra÷	2Fili 30mA
FUNZ	MODE IAn
8. In caso di esito positivo (resistenza globale di terra RA LOOF	15/10 – 18:04
>(Utlim / IAn) lo strumento visualizza il messaggio "NO TT	
OK" e la videata a lato che contiene il valore della	= 1765 Ω
tonsione di contette nel dienlov acconderio	
Ut Ut	= >50 V
FREQ	= 50.00Hz
VL-PE	=232V
	NO OK
Ra÷	2Fili 30mA
FUNZ	MODE I∆n

9. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

6.7.10. Verifica della protezione contro contatti indiretti (sistemi TN)

 Premere il tasto MENU, spostare il cursore su LOOP nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato in caso di sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni indicate cambiano in VL1-PE e VL1-L2 Selezionare il paese "Europa" (vedere § 5.1.2), le opzioni "TN", "25 o 50V", "50Hz o 60Hz" e la tensione di riferimento nelle impostazioni generali dello strumento (vedere § 5.1.3). NOTA: per paesi diversi da "Europa" i riferimenti su MCB e Fusibile disponibili possono cambiare

LOOP	15/10	- 18:0	4			
TN						
I^{\min}	=		Α			
fc fc						
ZL-PE	=		Ω			
FREQ.	= 0.00H	z				
VL-PE=	=0V	VL-N	V=0	V		
	1.1+	16/	`	0.20		
L-PE	υι	107	١	0.25		
FUNZ	MODE	MCB	-C	Tempo		

- 2. Usare i tasti ◀, ► per selezionare il parametro da modificare e i tasti ▲, ▼ per modificare il valore del parametro
 - FUNC → il tasto virtuale permette di impostare la modalità di misura dello strumento, che può essere L-PE (sistemi Monofase/Trifase) oppure L1-PE (sistemi Bifase)
 - MODE → il tasto virtuale permette di impostare la modalità di funzionamento dello strumento. Selezionare l'opzione Ut

➤ Tipo di protezione → il tasto virtuale permette di impostare il tipo di protezione (Fusibile di tipo gG, aM o magnetotermico MCB curve B, C, D, K) e le rispettive correnti nominali considerando i seguenti valori disponibili:

MCB curva B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

MCB curva C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A

MCB curve D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

Fusibile gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A

Fusibile aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A, 160A, 200A, 250A, 315A, 400A, 500A, 630A

➤ Tempo → il tasto virtuale permette di impostare il tempo di intervento della protezione tra le opzioni: 0.1s, 0.2s, 0.4s, 1s, 5s

premere il tasto **SALVA** per salvare i parametri selezionati e tornare alla videata di misura

- 3. Se possibile, scollegare tutti i carichi collegati a valle del punto misurato in quanto l'impedenza di queste utenze potrebbe falsare i risultati del test. Eseguire la calibrazione preliminare dei puntali come descritto al § 6.7.2
- 4. Inserire i connettori verde, blu e nero del cavo shuko a tre pin nei corrispondenti conduttori di ingresso B3, B4 e B1 dello strumento. In alternativa, utilizzare i singoli cavi e applicare le relative clip a coccodrillo alle estremità libere dei cavi. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel cavo di ingresso B1. Collegare la spina Shuko, i terminali a coccodrillo o il puntale remoto alla rete elettrica in accordo alle Fig. 25, Fig. 26, Fig. 27, Fig. 28 o Fig. 29

5.

6.

7.

8.

- Notare la presenza dei corretti valori di tensione tra L-PE LOOP 15/10 - 18:04 ΤN ►Ø◄ e L-N come mostrato nella videata a lato I^{\min} A pfc Ω ZL-PE FREQ. = 50.00Hz VL-PE=232V VL-N=231V L-PE Ut 16A 0.2s FUNZ MODE MCB-C Tempo Premere il tasto GO/STOP sullo strumento, il tasto LOOP 15/10 - 18:04 START sul puntale remoto o la funzione AutoStart TΝ ►Ø◀ А $I_{\it pfc}^{\rm min}$ (vedere § 5.1.5). Lo strumento inizierà la misura e sul display apparirà il messaggio "Misura ... ". Ω ZL-PE Durante tutta questa fase non scollegare i cavi di misura FREQ. = 50.00Hz dello strumento dal sistema in prova. La seguente VL-PE=232V VL-N=231V videata appare a display Misura... L-PE Ut 16A 0.2s FUNZ MODE MCB-C Tempo In caso di esito positivo (corrente di cortocircuito minima LOOP 15/10 - 18:04 calcolata SUPERIORE alla corrente di intervento del ΤN ►Ø◄ I^{\min} A 214 dispositivo di protezione entro il tempo specificato pfc vedere § 12.6), lo strumento visualizza il messaggio "OK" 1.03 Ω ZL-PE = e la videata a lato FREQ. = 50.00Hz VL-PE=232V VL-N=231V OK L-PE 16A Ut 0.2s FUNZ MODE MCB-C Tempo In caso di esito negativo (corrente di cortocircuito LOOP 15/10 - 18:04 ►Ø◀ ΤN minima calcolata INFERIORE alla corrente di intervento I^{\min} А 1695 del dispositivo di protezione entro il tempo specificato · pfc vedere § 12.6), lo strumento visualizza il messaggio "NO Ω 0.13 ZL-PE = OK" e la videata a lato FREQ. = 50.00HzVL-PE=232V VL-N=231V NO OK L-PE Ut 16A 0.2s FUNZ MODE MCB-C Tempo
- 9. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

4.

6.7.11. Situazioni anomale

Se lo strumento rileva una frequenza superiore al limite 1. massimo (63Hz), non esegue il test e visualizza una videata come quella a lato

е	LOOP	15/10	– 18:0	04	
а	TN				
	lpfc	=		Α	
	ZL-PE	=		Ω	
	FREQ.	= >63H	z		
	VL-PE=	=0V	VL-	N=0V	
	Fre	equenza	fuori	range	
	L-PE	STD	-		
	FUNZ	MODE			

- - -

- - -

VL-PE=<100V VL-N=<100V

Tensione <100V

FREQ. = 50.00Hz

FUNZ MODE

L-PE

STD

А

Ω

2. Se lo strumento rileva una tensione L-N o L-PE inferiore LOOP 15/10 – 18:04 al limite minimo (100V), non esegue il test e visualizza TN lpfc = una videata come quella a lato. Verificare che il sistema in prova sia alimentato ZL-PE =

3. Se lo strumento rileva una tensione L-N o L-PE superiore al limite massimo (265V), non esegue il test e visualizza una videata come quella a lato. Verificare il collegamento dei cavi di misura

LOOP	15/10	15/10 – 18:04				
TN						
Ipfc	=		Α			
ZL-PE	=		Ω			
FREQ.	= 50.00	Hz				
VL-PE=	=>265V	VL-I	N=>26	5V		
	Tension	e >26	5V			
L-PE	STD					
FUNZ	MODE					

Se lo strumento rileva una tensione L-L superiore al limite	LOOP	15/10	- 18:04	
massimo (460V), non esegue il test e visualizza una videata come quella a lato. Verificare il collegamento dei	TN Ipfc	= •	,	A
cavi di misura	ZL-L	= -	:	Ω
	FREQ. VL-PE=	= 50.00 =>265V	Hz VL-L=:	>460V
		Tension	e >460∖	/
	L-L	STD		
	FUNZ	MODE		

5.

6.

7.

8.

Se lo strumento rileva una tensione pericolosa sul	LOOP 15/10 – 18:04
conduttore PE fornisce la schermata di avviso mostrata a lato e blocca l'esecuzione delle prove. Verificare	IN Ipfc = A
l'efficienza del conduttore PE e dell'impianto di terra	ZL-PE = Ω
	FREQ. = 50.00Hz VL-PE= 231V VL-N= 234V
	Tensione su PE
	L-PE STD
	FUNZ MODE
Se lo strumento rileva l'assenza del segnale al morsetto	LOOP 15/10 – 18:04
B4 (conduttore neutro), fornisce la schermata di avviso riportata a lato e blocca l'esecuzione delle prove	TN Ipfc = A
	ZL-PE = Ω
	FREQ. = 50.00Hz VL-PE= 231V VL-N= 115V
	Manca N
	L-PE STD
	FUNZ MODE
Se lo strumento rileva l'assenza del segnale al morsetto	LOOP 15/10 - 18:04
B3 (conduttore PE), fornisce la schermata di avviso riportata a lato e blocca l'esecuzione delle prove	TN lpfc = A
	ZL-PE = Ω
	FREQ. = 50.00Hz
	Manca PE
	FUNZ MODE
Se lo strumento rileva l'assenza del segnale al morsetto	LOOP 15/10 – 18:04
B1 (conduttore di fase), fornisce la schermata di avviso mostrata a lato e blocca l'esecuzione delle prove	IN Ipfc = A
	ZL-PE = Ω
	FREQ. = 50.00Hz
	VL-PE= 0V VL-N= 0V
	Manca L
	FUNZ MODE

 Se lo strumento rileva che i conduttori di fase L e neutro I N sono invertiti, non esegue il test e viene visualizzata una schermata simile a quella riportata a lato. Ruotare la spina di rete o controllare il collegamento dei cavi di misurazione

)	LOOP	15/10	- 18:	04	
	TN				
	lpfc	=		А	
	ZL-PE	=		Ω	
	FREO	- 50.00	Hz		
		- 30.00 - 1\/	\/I_	N- 231	v
		- 1 V	V L-	IN- 201	v
		lovort	irol	NI	
		inven	Ire L-	N	
	L-PE	STD			
	FUNZ	MODE			

 Se lo strumento rileva che i conduttori di fase e PE sono invertiti, non esegue il test e viene visualizzata una schermata simile a quella riportata a lato. Verificare il collegamento dei cavi di misura

LOOP 15/10 – 18:04					
TN					
Ipfc	=		А		
ZL-PE	=		Ω		
FREQ.	= 50.00	Hz			
VL-PE=	= 231V	VL-	N= 1V		
	Inverti	re L-F	ΡE		
L-PE	STD				
FUNZ	MODE				

 Se lo strumento rileva una tensione di contatto dannosa L Ut (oltre il limite impostato 25V o 50V) nel pre-test T iniziale, fornisce la schermata di avviso mostrata a lato e blocca l'esecuzione dei test. Verificare l'efficienza del conduttore PE e dell'impianto di terra

LOOP	15/10	15/10 – 18:04 🔳			
TT					
RA	=		Ω		
Ut	=		V		
FREQ. = 50.00Hz VL-PE= 231V					
Tensione contatto. > Lim					
Ra	2Wire	30n	۱A		
FUNC	MODE	IΔ	n		

2.

6.8. LOZ: IMPEDENZA LINEA/LOOP AD ALTA RISOLUZIONE

Le misure di impedenza di Linea/Loop ad alta risoluzione $(0.1m\Omega)$ sono eseguite utilizzando l'accessorio opzionale **IMP57** collegato all'unità Master tramite il cavo ottico/RS-232 C2001 fornito con lo stesso accessorio. L'IMP57 deve essere alimentato direttamente dalla rete su cui vengono effettuate le misure. Per informazioni dettagliate, fare riferimento al manuale d'uso dell'accessorio IMP57

Di seguito è riportata la procedura per la misura dell'impedenza <u>STD L-L nei sistemi TN</u>. Le stesse procedure possono essere applicate a qualsiasi altro caso considerando quanto riportato nel § 6.7

 Premere il tasto MENU, spostare il cursore su LoZ nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato in caso di sistema elettrico Monofase L-N-PE selezionato (vedere § 5.1.3). Per sistemi Bifase L-L-PE le tensioni indicate cambiano in VL1-PE e VL1-L2
 Il messaggio "IMP57 non connesso" indica che

l'accessorio IMP57 non è collegato allo strumento o non è alimentato direttamente dalla rete

	LoZ	15/10 -	- 18:0)4	
e a	TN Ipsc	= - ·		А	
i	ZL-L	=		mΩ	
i	R = FREQ. VL-L= -	· mΩ =Hz V	X =	n	nΩ
)					
۱	IM	P57 non	conr	nesso	
	L-L	STD			
	FUNZ	MODE			

Collegare l'IMP57 allo strumento tramite il cavo C2001 e al sistema alimentato tramite i morsetti di ingresso C1, C2 e P1, P2 posti su di esso (vedere manuale d'uso IMP57). La videata come quella a lato è mostrata a display	LoZ TN	15/10 – 18:04	1
e P1 , P2 posti su di esso (vedere manuale d'uso IMP57). La videata come quella a lato è mostrata a display	R = 1 FREQ. =	= = mΩ X = - 50.0Hz	ΜΩ mΩ
	VL-L= 38	34V	

 Premere il tasto GO/STOP sullo strumento per avviare il test. La seguente videata è mostrata a display (in caso di misura L-L in modo STD) Sul display viene visualizzata la corrente di cortocircuito presunta standard (STD). Nella parte centrale del display sono visualizzati i valori dell'impedenza di loop L-L, oltre alle sue componenti resistive e reattive, espresse in mΩ

					_
I	LoZ	15/10	- 18:0	04	
i	TN				
-	Ipsc	=	15.3	kA	
)	ZL-L	`	15.0	mΩ	
>	R = 13. FREQ. VL-L= 3	2 mΩ = 50.0I 384V	X = Hz	7.5 mΩ	
	L-L	STD			
	FUNZ	MODE			

STD

MODE

FUNZ

 Premere il tasto SAVE per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto ESC/MENU per uscire dalla schermata senza salvare e tornare al menu principale

6.9. 1,2,3: SENSO CICLICO E CONCORDANZA DELLE FASI

Questa funzione consente di testare la sequenza e la concordanza delle fasi con il **metodo a 1 terminale** mediante contatto diretto con parti in tensione (<u>non su cavi con</u> <u>guaina isolante</u>)

Fig. 35: Controllo sequenza fasi con cavo di misura

Fig. 36: Controllo sequenza fasi con puntale remoto

2. Inserire il connettore del cavo nero nel corrispondente cavo di ingresso B1 dello strumento. In alternativa, utilizzare il singolo cavo e applicare la relativa clip a coccodrillo all'estremità libera del cavo. È anche possibile utilizzare il puntale remoto inserendo il suo connettore multipolare nel cavo di ingresso B1. Collegare i morsetti a coccodrillo o il puntale remoto alla rete elettrica in base alle Fig. 35 o Fig. 36

MODE

3. Premere il tasto GO/STOP sullo strumento o il tasto 123 15/10 - 18:04 ΤN START sul puntale remoto. Lo strumento inizia il test Il messaggio "Tocca L1" è mostrato a display ad indicare l'attesa che lo strumento sia connesso alla fase L1 del sistema in prova Tocca L1 Toccare la parte attiva della fase L1 1T MODE 15/10 - 18:04 4. Lo strumento emette un suono lungo fino a quando non è 123 termine TN presente la tensione di ingresso. AI dell'acquisizione della fase L1, lo strumento è in attesa del segnale sulla fase L2 e mostra il simbolo di "Rilascia L1" come mostrato nella videata a lato Rilascia I 1T MODE 15/10 - 18:04 5. In queste condizioni, collegare il terminale a coccodrillo, o 123 il puntale remoto alla fase L2 come mostrato nelle Fig. 35 TN o Fig. 36. Sul display viene visualizzato il messaggio "Tocca L2" ad indicare l'attesa che lo strumento sia connesso alla fase L2 del sistema in prova. Tocca L2 Toccare la parte attiva della fase L2 1T MODE 6. Lo strumento emette un suono lungo fino a guando non è 123 15/10 - 18:04 _ presente la tensione di ingresso. Al termine del test, se la TN sequenza delle fasi rilevata è corretta, lo strumento visualizza una videata come quella a lato (risultato "123") 123 e il messaggio "OK" OK 1T

MODE

1T MODE

- Al termine del test, se la sequenza delle fasi rilevata è 123 7. 15/10 - 18:04 incorretta, lo strumento visualizza una videata come TN quella a lato (risultato "213") e il messaggio "NO OK" 213 NO OK 1T MODE 8. Al termine del test, se le due tensioni rilevate sono in fase 123 15/10 - 18:04 (concordanza di fase tra due distinti sistemi trifase), TN lo strumento visualizza una videata come quella a lato (risultato "11-") e il messaggio "OK" 11-OK
- 9. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

6.9.1. Situazioni anomale

 Se lo strumento rileva una frequenza superiore al limite 123 15 massimo non esegue il test e visualizza una videata TN come quella a lato

123	15/10	– 18:04	
TN			
	-		
		<i>.</i> .	
Fre	quenza	a fuori ran	ge
1T			
MODE			

Se lo strumento rileva una tensione in ingresso L-PE <u>123 15/10 - 18:04</u>
 superiore a 265V, visualizza una videata come quella a TN lato

 Se tra l'inizio della prova e l'acquisizione della prima 123 tensione o tra l'acquisizione della prima e della seconda TN tensione è trascorso un tempo superiore a circa 10s, lo strumento visualizza una videata come quella a lato. È necessario ripetere il test

MODE			
123	15/10	– 18:04	
TN			
	-		
	Tompo	agaduta	
	rempc	Scadulo	
1T			
MODE			

Tensione > 265V

1T

6.10. $\Delta V\%$: CADUTA DI TENSIONE SULLE LINEE

Questa funzione consente di valutare il valore percentuale della caduta di tensione tra due punti di una linea di distribuzione in cui sia presente un dispositivo di protezione e confrontarlo con eventuali limiti di normativa. Sono disponibili le seguenti modalità di funzionamento

- L-N Misura dell'impedenza di linea fra il conduttore di fase e il conduttore di neutro. La misura è svolta anche con risoluzione alta (0.1mΩ) con accessorio opzionale IMP57
- L-L Misura dell'impedenza di linea fra due conduttori di fase (L1-L2 per sistemi Bifase). La misura è svolta anche con risoluzione alta (0.1mΩ) con accessorio opzionale IMP57

ATTENZIONE

La misurazione dell'impedenza di linea o dell'anello di guasto comporta la circolazione di una corrente massima come da caratteristiche tecniche dello strumento (vedere § 12.11). Questo potrebbe comportare l'intervento di eventuali protezioni magnetotermiche con correnti di intervento inferiori

Fig. 37: Collegamento strumento per misura caduta di tensione in modo L-N

Black, Nero, Negro, Schwarz, Noir, Preto

Fig. 38: Collegamento strumento per misura caduta di tensione in modo L-L

5.

 Premere il tasto MENU, spostare il cursore su ΔV% nel menu principale tramite i tasti freccia (▲,▼) e confermare con ENTER. Successivamente lo strumento visualizza una videata simile a quella qui riportata a lato

Δ V %	15/10	- 18:04			
ΔV%	= -	%	0		
ZL-N	= -	<u>Ω</u>	2		
FREQ. = 0.00 Hz VL-PE= 0 V VL-N= 0 V					
L-N	16A	4%	0.00Ω		
MODE	Inom	Lim.	Z> φ<		

- 2. Utilizzare i tasti ◀, ▶ per selezionare il parametro da modificare e i tasti ▲,▼ per modificare il valore del parametro:
 - ➤ MODE → II tasto virtuale permette di impostare la modalità di misura dello strumento, che può essere: L-N, L-L, L1-L2, CAL
 - ➢ Inom → il tasto virtuale permette di impostare il valore della corrente nominale del dispositivo di protezione nel campo: 1A ÷ 999A in passi da 1A
 - ► Lim → il tasto virtuale permette di impostare il valore limite massimo consentito della caduta di tensione (ΔV %) per la linea principale in prova
 - Z> d< → questa posizione permette di eseguire la prima misura di impedenza Z1 (Offset). In questo caso lo strumento misurerà l'impedenza a monte come punto iniziale della linea principale in prova prendendola come riferimento di partenza</p>
- 3. Selezionare la modalità CAL tramite i tasti freccia ▲, ▼ ed eseguire la calibrazione dei cavi di prova o del cavo con spina Shuko utilizzando l'accessorio ZEROLOOP prima di eseguire il test (vedere § 6.7.2)
- 4. Collegare lo strumento al punto iniziale della linea principale in prova (tipicamente a valle di un dispositivo di protezione) in base alla Fig. 37 o Fig. 38 per effettuare la prima misura di impedenza Z1 (Offset). In questo caso lo strumento misurerà l'impedenza a monte del punto iniziale della linea principale in prova prendendola come riferimento di partenza. La schermata seguente (riferita alla misura L-L) è mostrata a display

Jsare i tasti ◀, ► e spostare il cursore nella posizione "	Δ V %	15/10	- 18:04	- Provide
Z>\$\phi< ". Premere il tasto GO/STOP sullo strumento per avviare il test. La seguente videata è mostrata a display	ΔV%	= -	0	▶Ø ◀
	ZL-L	= -	(2
	FREQ. = VL-PE=	= 50.00 223V	Hz VL-L=	387V
	L-L	16A	4%	0.00Ω
	MODE	Inom	Lim.	Z>

 Usare i tasti ◀, ▶ e spostare il cursore nella posizione "Z>ϕ<". Premere il tasto GO/STOP sullo strumento per avviare il test. Il risultato della misurazione Z1 (offset) è mostrata a display sopra la posizione "Z>ϕ<". Se il valore di <u>Z1 (offset) è <10Ω</u> il risultato "OK" è mostrata a display e salvato automaticamente nel buffer interno

	∆V% 15/10 – 18:04				
•				, ►ø∢	
1	$\Delta V\%$, = -	9	6	
	ZL-L	= -	(2	
l					
	FREQ.	= 50.00	Hz		
	VL-PE=	= 223V	VL-L=	387V	
		O	K		
	L-L	16A	4%	1.48Ω	
	MODE	Inom	Lim.	Z> φ<	

- Collegare lo strumento al punto finale della linea principale in prova in accordo alle Fig. 37 o Fig. 38 per misurare l'impedenza Z2 a fine linea. Notare il il valore Z1 (Offset) precedentemente misurato mostrato a display
- 8. Utilizzare i tasti ◄, ▶ e spostare il cursore in qualsiasi posizione tranne "Z>ϕ<". Premere il tasto GO/STOP sullo strumento per misurare l'impedenza Z2 e completare la misura della caduta di tensione ΔV%. Durante tutta questa fase non scollegare i cavi di misura dello strumento dal sistema in prova. In caso di esito positivo (valore percentuale massimo della caduta di tensione calcolata secondo § 12.11 <valore limite impostato), lo strumento visualizza l'esito "OK" e la videata a lato che contiene il valore dell'impedenza di fine linea Z2 insieme al valore Z1 (Offset)
- In caso di esito positivo (valore percentuale massimo della caduta di tensione calcolata secondo § 12.11 > valore limite impostato), lo strumento visualizza l'esito "NO OK" e la videata a lato che contiene il valore dell'impedenza di fine linea Z2 insieme al valore Z1 (Offset)

	Δ V %	15/10 – 18:04 Í			
;	ΔV%	= 0	.4 %	6 ►Ø ◄	
a	ZL-L	= 1	.57 🤉	2	
>	FREQ. : VL-PE=	= 50.00 223V	Hz VL-L=	387V	
		O	K		
,	L-L	16A	4%	1.48Ω	
,	MODE	Inom	Lim.	Z> φ<	

)	Δ V %	15/10	15/10 – 18:04			
^				►Ø◀		
)	$\Delta V\%$	= 1	9.5 %	%		
) 1	ZL-L	= 5	.97 <u>(</u>	2		
	FREQ. = VL-PE=	= 50.00 223V	Hz VL-L=	387V		
		NO	OK			
	L-L	16A	4%	1.48Ω		
	MODE	Inom	Lim.	Z>		

10. Premere il tasto **SAVE** per memorizzare il risultato del test nella memoria dello strumento (vedere § 7.1) oppure il tasto **ESC/MENU** per uscire dalla schermata senza salvare e tornare al menu principale

3.

6.10.1. Situazioni anomale

Se lo strumento rileva una frequenza superiore al limite 1. massimo (63Hz), non esegue il test e visualizza una videata come quella a lato.

Δ V %	15/10	- 18:04	
ΔV%	= -	%	⊳ø ∢ ∕₀
ZL-N	= -	<u>C</u>	2
FREQ. : VL-PE=	>63 Hz 232V	VL-N=	232V
Free	quenza	fuori rar	ige
L-N	16A	4%	0.12Ω
MODE	Inom	Lim.	Z>

Se lo strumento rileva una tensione L-N o L-PE inferiore 2. al limite minimo (100V), non esegue il test e visualizza una videata come quella a lato. Verificare che il sistema in prova sia alimentato.

Δ V %	15/10	– 18:04			
ΔV%	= -	%	►Ø ∢		
ZL-N	= -	<u>C</u>	2		
FREQ.= 50.00 Hz VL-PE <100V VL-N<100V					
Tensione <100V					
L-N	16A	4%	0.12Ω		
MODE	Inom	Lim.	Z>		

Se lo strumento rileva una tensione L-L superiore al limite	Δ V %	15/10	- 18:04	
massimo (460V), non esegue il test e visualizza una videata come quella a lato. Verificare il collegamento dei	ΔV%	= -	%	Þø∢
cavi di misura.	ZL-N	= -	Ω	2
	FREQ.= VL-PE=	50.00 242V	Hz VL-L >4	460V
	Те	ensione	e >460V	
	L-L	16A	4%	0.12Ω
	MODE	Inom	Lim.	Z> φ<

re	Δ V %	15/10	- 18:04	
a to	∆V%	, = -	%	, ∽
	ZL-N	= -	Ω	2
	FREQ.= VL-PE :	= 50.00 >265V	Hz VL-N >	265V
]	Tensione	e >265V	
	L-N	16A	4%	0.12Ω
	MODE	Inom	Lim.	Z>

4. Se lo strumento rileva una tensione L-N o L-PE superior al limite massimo (265V), non esegue il test e visualizz una videata come quella a lato. Verificare il collegament dei cavi di misura.

7.

5. Se lo strumento rileva una tensione pericolosa sul conduttore PE fornisce la schermata di avviso mostrata a lato e blocca l'esecuzione delle prove. Verificare l'efficienza del conduttore PE e dell'impianto di terra

Δ V %	15/10	15/10 – 18:04				
ΔV%	= -		⊳ø ∢ %			
ZL-N	= -		Ω			
FREQ.= 50.00Hz VL-PE= 232V VL-N= 232V						
Tensione su PE						
L-N	16A	4%	0.12Ω			
MODE	Inom	Lim.	Z>			

Se lo strumento rileva l'assenza del segnale al morsetto 6. B1 (conduttore di fase), fornisce la schermata di avviso mostrata a lato e blocca l'esecuzione delle prove

Δ V %	15/10	15/10 – 18:04 📃		
ΔV%	= -	%	▶ø ∢ ∕₀	
ZL-N	= -	<u>C</u>	2	
FREQ.= 50.00Hz VL-PE= 0V VL-N= 0V				
	Mano	ca L		
L-N	16A	4%	0.12Ω	
MODE	Inom	Lim.	7> d<	

Se lo strumento rileva l'assenza del segnale al morsetto		15/10	- 18:04	
34 (conduttore neutro), fornisce la schermata di avviso riportata a lato e blocca l'esecuzione delle prove	ΔV%	= -	%	⊳ø ∢
	ZL-N	= -	Ω	
	FREQ.= VL-PE=	50.00⊦ 232∨	Hz VL-N=	115V
		Mano	ca N	
	L-N	16A	4%	0.12Ω
	MODE	Inom	Lim.	Z>

to	Δ V %	15/10	- 18:04	
SO	ΔV%	= -	%	, ⊳
	ZL-N	= -	Ω	2
	FREQ.= VL-PE=	50.00⊦ 115V	Iz VL-N=	232V
		Manc	a PE	
	L-N	16A	4%	0.12Ω
	MODE	Inom	Lim	7> d<

8. Se lo strumento rileva l'assenza del segnale al morsett B3 (conduttore PE), fornisce la schermata di avvis riportata a lato e blocca l'esecuzione delle prove

 Se lo strumento rileva che i conduttori di fase L e neutro N sono invertiti, non esegue il test e viene visualizzata una schermata simile a quella riportata a lato. Ruotare la spina di rete o controllare il collegamento dei cavi di misurazione

Δ V %	15/10	15/10 – 18:04				
ΔV%	, = -	%	▶∅ ◀			
ZL-N	= -	<u>Ω</u>	<u>)</u>			
FREQ.= VL-PE=	= 50.00⊦ ⊧ 1V	lz VL-N=	232V			
	Invertir	e L-N				
L-N	16A	4%	0.12Ω			
MODE	Inom	Lim.	Z>			

 Se lo strumento rileva che i conduttori di fase e PE sono ΔV% invertiti, non esegue il test e viene visualizzata una schermata simile a quella riportata a lato. Verificare il collegamento dei cavi di misura

,.					
ΔV%	= -	%	o^ M		
ZL-N	= -	<u>Ω</u>	2		
FREQ.= 50.00Hz VL-PE= 232V VL-N= 1V					
Invertire L-PE					
L-N	16A	4%	0.12Ω		
MODE	Inom	Lim.	Z>		

15/10 - 18:04

 Se lo strumento rileva un VL-PE, VL-N o VN-PE >5V durante l'operazione di calibrazione dei puntali non esegue il test e viene visualizzata una schermata simile a quella riportata a lato. Verificare il collegamento dei cavi di misurazione

Δ V %	15/	′10 -	- 18	3:04	
RL	=		-	Ω	
RN	=		-	Ω	
RPE	=		-	Ω	
FREQ.= 50.00Hz VL-PE= 232V VL-N= 231V					
Tensi	one	ingı	es	so > 5V	
CAL					
MODE					

7. MEMORIZZAZIONE RISULTATI

Lo strumento consente la memorizzazione di max 999 risultati di misura. I dati possono essere richiamati a display e cancellati in ogni momento ed è possibile associare in fase di salvataggio fino ad un massimo di 3 livelli di marcatori numerici di riferimento mnemonici relativi all'impianto, alla stringa e al modulo FV (con valore max 250). Per ogni livello sono disponibili 20 nomi di marcatori eventualmente personalizzabili dall'utente tramite collegamento a PC con software di gestione in dotazione. E' inoltre possibile inserire un commento associato ad ogni misura.

7.1. SALVATAGGIO DELLE MISURE

- 4. Premere il tasto SAVE/ENTER con risultato di misura SAVE 15/10 - 18:04 presente a display. La videata a lato è mostrata. In essa Misura sono presenti: Impianto
 - La voce "Misura" che identifica la prima locazione di Stringa memoria disponibile
 - > Il primo marcatore (es: "Impianto") a cui è possibile associare un valore numerico compreso tra 1 ÷ 250
 - Il secondo marcatore (es: "Stringa") a cui è possibile associare un valore numerico compreso tra 0 (- - -) 250
 - Il terzo marcatore (es: "Modulo") a cui è possibile associare un valore numerico compreso tra 0 (- - -) 250
 - La voce "Commento" associato alla misura in cui è possibile inserire un testo di max 30 caratteri.
- 5. Usare i tasti freccia ◀ o ► per selezionare il marcatore e i tasti freccia (▲,▼) per modificare l'etichetta del valore numerico associato (ex: "Area") tra quelli disponibili o personalizzabili dall'utente (max 20 nomi)
- 6. Selezionare la voce "Commento" e premere il tasto SAVE/ENTER per inserire il testo desiderato. La seguente videata con tastiera virtuale è mostrata a display:

per

cancellare

per l'inserimento

SAVE/ENTER

tornare alla videata precedente.

tasto

selezionato

ì	SAVE	15/10 – 18:04	
)	Misura Area	003	
)	Stringa Modulo		
1	Commen	to: max 30 caratter	

- 7. Usare i tasti freccia ◀ o ► per spostare il cursore sul SAVE 15/10 - 18:04 carattere selezionare e premere il tasto SAVE/ENTER Tastiera COMMENTO 8. Muovere il cursore nella posizione "CANC" e premere il carattere 0 1 2 3 4 5 6 7 8 9 0 () % Q W E R T Y U I 🖸 P <=> # 9. Muovere il cursore nella posizione "FINE" e premere il A S D F G H J K L + - * / & tasto SAVE/ENTER per confermare il commento scritto e Z X C V B N M . , ; : ! ? _ ÄÖÜßµÑCÁÍÓÚÜ¿į ÁÈÉÙÇÄËÏÖÜÆØÅ CANC FINE
- 10. Premere il tasto SAVE/ENTER per confermare il salvataggio della misura o **ESC/MENU** per uscire senza salvare

il

~	Modulo		-
e	Commento: caratteri	max	30
е			
÷			
۵			
÷			

003

001

7.2. **RICHIAMO DEI DATI A DISPLAY E CANCELLAZIONE MEMORIA**

1. Posizionare il cursore sulla voce MEM utilizzando i tast freccia (\blacktriangle, ∇) e confermare con **ENTER**. La videata lato è mostrata a display. Nella videata sono presenti:

- Il numero della locazione di memoria in cui è salvata la misura
- La data in cui è stata salvata la misura.
- Il tipo di misura salvata
- Il totale delle misure salvate per ogni schermata e la memoria residua disponibile

ti	MEM	15/10 –		
a	Ν.	Da	ta	Tipo
a	001	14/0	1/21	RPE
	002	15/0	1/21	MΩ
2	003	15/0	1/21	LoΩ
a	004	15/0	1/21	LoZ
	005	16/0	1/21	Auto
	006	17/0	1/21	Loop
	007	19/0	1/21	$\Delta V \%$
а				
	Tot: 007		Libera:	992
	$\wedge \downarrow$	$\wedge \downarrow$	All	
	Rec	Pag	CANC	

15/02 - 18:04

Data

14/01/21

15/01/21

15/01/21

15/01/21

16/01/21

17/01/21

19/01/21

ENTER / ESC

 $\uparrow \downarrow$

Pag

Tipo

RPE

MΩ

LoΩ

LoZ

Auto

Loop

ΔV %

_

?

Libera: 992

All

CANC

Ν.

002

003

004

005

006

007

 $\wedge \downarrow$

Rec

- 2. Usare i tasti freccia (\blacktriangle, ∇) per selezionare la misura da MEM richiamare a display 001
- 3. Premere il tasto SAVE/ENTER per visualizzare la misura salvata a display. Premere il tasto ESC/MENU per tornare alla videata precedente
- 4. Usare i tasti freccia ◀ o ► per selezionare l'opzione "Pag" e passare alla videata successiva
- 5. Selezionare l'opzione "CANC" per cancellare l'intero contenuto della memoria. La seguente videata è Tot: 007 mostrata:

6.	Premere il tasto SAVE/ENTER per confermare la	MEM 15/10 – 18:04
	cancellazione dei dati. Il messaggio "Memoria vuota" è	
7.	mostrato a display Premere il tasto MENU/ESC per uscire e tornare al menu generale.	CANCELLA TUTTO

8. COLLEGAMENTO DELLO STRUMENTO A PC

ATTENZIONE

- La connessione tra PC e strumento avviene tramite il cavo C2006
- Per effettuare il trasferimento dati verso un PC è necessario avere preventivamente installato nel PC stesso sia il SW di gestione

- Prima di effettuare il collegamento è necessario selezionare a PC la porta utilizzata e il baud rate corretto (57600 bps). Per impostare questi parametri avviare il software di gestione in dotazione e consultare l'help in linea del programma
- La porta selezionata non deve essere impegnata da altri dispositivi o applicazioni come mouse, modem, ecc. Chiudere eventualmente processi in esecuzione a partire dalla funzione Task Manager di Windows
- La porta ottica emette radiazione LED invisibile. Non osservare direttamente con strumenti ottici. Apparecchio LED di classe 1M secondo IEC/EN60825-1

Per trasferire i dati a PC attenersi alla seguente procedura:

- 1. Accendere lo strumento premendo il tasto ON/OFF
- 2. Collegare lo strumento a PC utilizzando il cavo ottico/USB C2006 in dotazione
- 3. Premere il tasto ESC/MENU per aprire il menu principale
- 4. Selezionare con i tasti freccia (▲,▼) la voce "PC" per entrare in modalità trasferimento dati e confermare con SAVE/ENTER

MENU		15/10 – 18:04
LoZ	:	Z alta precisione
1,2,3	:	Seq. Fasi
Δ V %	:	Caduta Tens.
SET	:	Impostazioni
MEM	:	Dati memorizzati
PC	:	Trasferimento dati
		▼

5. Lo strumento fornisce la videata seguente:

PC 15/10 – 18:04
CONNESSIONE PC

6. Usare i comandi del software di gestione per attivare il trasferimento dati (consultare l'help in linea del programma)

9. MANUTENZIONE

9.1. GENERALITÀ

- Durante l'utilizzo e l'immagazzinamento rispettare le raccomandazioni elencate in questo manuale per evitare possibili danni o pericoli durante l'utilizzo
- Non utilizzare lo strumento in ambienti caratterizzati da elevato tasso di umidità o temperatura elevata. Non esporre direttamente alla luce del sole
- Se si prevede di non utilizzarlo per un lungo periodo di tempo, rimuovere le batterie per evitare da parte di queste ultime fuoruscite di liquidi che possono danneggiare i circuiti interni dello strumento

9.2. SOSTITUZIONE BATTERIE

Quando sul display LCD appare il simbolo di batteria scarica "—" sostituire le batterie interne.

ATTENZIONE

Solo tecnici qualificati possono effettuare questa operazione. Prima di effettuare questa operazione assicurarsi di aver rimosso tutti i cavi dai terminali di ingresso.

- 1. Spegnere lo strumento premendo a lungo il pulsante di accensione
- 2. Rimuovere i cavi dai terminali di ingresso
- 3. Svitare la vite di fissaggio del coperchio dal vano batterie e rimuovere lo stesso
- 4. Rimuovere dal vano batterie tutte le batterie e sostituirle solo con batterie tutte nuove e tutte del tipo corretto (vedere § 10.3) rispettando le polarità indicate
- 5. Riposizionare il coperchio vano batterie e fissarlo con l'apposita vite
- 6. Non disperdere nell'ambiente le batterie utilizzate. Usare gli appositi contenitori per lo smaltimento

9.3. PULIZIA DELLO STRUMENTO

Per la pulizia dello strumento utilizzare un panno morbido e asciutto. Non usare mai panni umidi, solventi, acqua, ecc.

9.4. FINE VITA

ATTENZIONE: il simbolo riportato indica che l'apparecchiatura, i suoi accessori e le batterie interne devono essere raccolti separatamente e trattati in modo corretto

10. SPECIFICHE TECNICHE

Incertezza indicata come ±[%lettura + (num. cifre) * risoluzione] a 23°C ± 5°C, <80%RH

10.1. CARATTERISTIC Tensione AC TRMS	CHE TECN	ICHE				
Campo [V]		Risoluzione [V]		Incertezza		
15 ÷ 460		1		±(3%lettura + 2cifre)		
Frequenza	I					
Campo [Hz]		Risoluzior	ne [Hz]	Incertezza		
47.50 ÷ 52.50 / 57.00	÷ 63.00	0.01		±(0.1%lettura+1 cifre)		
Continuità conduttore	di protezio	ne (RPE)		· · · · · · · · · · · · · · · · · · ·		
Campo [Ω]	-	Risoluzio	ne [Ω]	Incertezza		
0.00 ÷ 9.99		0.01				
10.0 ÷ 99.9		0.1	=	±(5.0% lettura + 3 cifre)		
100 ÷ 1999		1				
Corrente di prova: Corrente di prova generata: Tensione a vuoto: Protezione sugli ingressi: Resistenza di Isolamen	>200mA DC f risoluzione 1n 4 < V ₀ < 24VE messaggio er to (ΜΩ)	ino a 5 Ω (inclusi puntali di m hA, campo 0 ÷ 250mA DC rore per tensione sugli ingre:	isura) ssi >10V			
Tensione di prova [V]	Ca	ampo [MΩ]	Risoluzione [MG	2] Incertezza		
	C	.01 ÷ 9.99	0.01	(2.00/lott + 2cifra)		
50	1	0.0 ÷ 49.9	0.1	$\pm (2.0\%$ lett + 2cme)		
	5	0.0 ÷ 99.9	0.1	±(5.0% lett + 2 cifre)		
	0	.01 ÷ 9.99	0.01	$+(2.0\% \text{ left} \pm 2.\text{ cifre})$		
100	1	0.0 ÷ 99.9	0.1			
		100 ÷ 199	1	±(5.0% lett + 2 cifre)		
	0	.01 ÷ 9.99	0.01			
250	10).0 ÷ 199.9	0.1	±(2.0% lett + 2 cifre)		
200		200 ÷ 249	1			
		250 ÷ 499	•	$\pm (5.0\% \text{ lett} + 2 \text{ cifre})$		
	0	.01 ÷ 9.99	0.01			
500	1(0.0 ÷ 199.9	0.1	$\pm (2.0\% \text{ lett} + 2 \text{ cifre})$		
		200 ÷ 499	1			
		500 ÷ 999	0.04	$\pm (5.0\% \text{ lett} + 2 \text{ cifre})$		
4000	0	.01 ÷ 9.99	0.01			
1000	10	<u>).0 ÷ 199.9</u>	0.1	$\pm (2.0\% \text{ lett} + 2 \text{ cifre})$		
Tensione circuito aperto Corrente di misura nominale: Corrente di corto circuito Protezione sugli ingressi:	tensione di prov >1mA su 1kΩ x <6.0mA per ogr messaggio erro	UU ÷ 1999 a nominale -0% +10% Vnom (50V, 100V, 250V, 10 i tensione di prova re per tensione sugli ingress Ease-Neutro Fase	1)00V), >2.2mA con 230k£ i >30V c-PE)	2 @ 500V		
impedenza Linea/LOOp	1-22-236	, i ase-ineutio, ras				

Campo [Ω]	Risoluzione [Ω]	Incertezza (*)
0.01 ÷ 9.99	0.01	(50) (letture + 2 citre)
10.0 ÷ 199.9	0.1	\pm (5%)ettura + 3 cirre)

Corrente di primo guasto – Sistemi IT

Campo [mA]	Risoluzione [mA]	Incertezza
0.1 ÷ 0.9	0.1	\pm (5% lettura +1 cifra)
1 ÷ 999	1	\pm (5% lettura + 3 cifre)

Tensione di contatto limite (ULIM) : 25V, 50V

Verifica protezioni differenziali (RCD) di tipo scatolato

Tipo di differenziale (RCD):	AC (∞), A/F (∞), B/B+($==$),CCID (∞ ,== nazione USA), Generale (G), Selettivo (S)
Sistemi Monofase (L-N-PE)	
Campo tensione L-PE, L-N:	100V ÷265V RCD tipo AC, A/F, B/B+ e CCID (I∆N ≤100mA)
-	190V ÷ 265V RCD tipo B/B+ (I∆N = 300mA)
Campo tensione N-PE:	<10V
Sistemi Bifase (ritardo fase VL1-P	E, VL2-PE = 180° o ritardo fase VL1-PE, VL2-PE = 120°)
Campo tensione L1-PE, L1-L2:	100V ÷265V RCD tipo AC, A/F, B/B+ e CCID (I∆N ≤100mA)
Campo tensione L2-PE:	0V÷265V RCD tipo AC, A/F
	0V÷min[(VL1-PE-100V) e (VL1-L2-100V), RCD tipo B/B+ (I∆N ≤100mA)
Corrente di intervento (I∆N):	5mA 6mA,10mA, 20mA, 30mA, 100mA, 300mA, 500mA, 650mA, 1000mA
Frequenza:	50/60Hz ± 5%
· · · · · · · · · · · · · · · · · · ·	

Corrente di Intervento differenziali di tipo scatolato 🚽 - (solo per RCD tipo Generale)

Tipo RCD	IΔN	Campo I∆ _N [mA]	Risoluzione [mA]	Incertezza		
CCID	5mA, 20mA	(0.2 ÷ 1.3) I _{∆N}		09/ 100/1		
AC, A/F, B/B+	6mA,10mA		< 0.41	-0%, +10%		
AC, A/F, B/B+	30mA ≤I∆N ≤300mA	(0.2 ÷ 1.1) I _{∆N}	$\leq 0.11_{\Delta N}$	00/ 150/1		
AC, A/F	500mA ≤I∆N ≤650mA			- 0%, +3%l∆N		

Durata misura tempo di intervento RCD scatolati - Sistemi TT/TN

		x 1/2	2		x 1		x 5	Α	UTO			AUTO	+
_	١	G	S	G	S	G	S	G	S	G	S	G	S
5mA	AC A/F B/B+ CCID			999						310			
6mA	AC A/F B/B+ CCID	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	\checkmark	✓✓	310 310 310		× ×	
10mA	AC A/F B/B+ CCID	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	\checkmark	✓✓	310 310 310		\checkmark	
20mA	AC A/F B/B+ CCID			999						310			
30mA	AC A/F B/B+ CCID	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	✓ ✓	 ✓ 	310 310 310		√ √	
100mA	AC A/F B/B+ CCID	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	\rightarrow \rightarrow	✓ ✓	310 310 310			
300mA	AC A/F B/B+ CCID	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	\rightarrow \rightarrow	✓ ✓	310 310 310			
500mA 650mA	AC A/F B/B+ CCID	999 999	999 999	999 999	999 999	50	150	~	✓	310 310			
1000mA	AC A/F B/B+ CCID	999 999	999 999	999 999									

Tabella di durata della misura del tempo di intervento [ms] - Risoluzione:1ms, Precisione: ±(2.0%lettura + 2cifre NOTA: RCD tipo CCID disponibili solo per nazione = USA e sistemi TN

		x 1/	/2		x 1		x 5	Α	UTO			AUT	+C
	\	G	S	G	S	G	S	G	S	G	S	G	S
6mA 10mA 30mA	AC A/F B/B+	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	✓✓	✓✓	310 310 310		✓	
100mA 300mA	AC A/F B/B+	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	✓ ✓	< <	310 310 310			
500mA 650mA	AC A/F B/B+	999 999	999 999	999 999	999 999	50	150	✓ ✓		310 310			
1000mA	AC A/F B/B+	999 999	999 999	999 999	999 999								

Durata misura tempo di intervento RCD scatolati - Sistemi IT

Tabella di durata della misura del tempo di intervento [ms] - Risoluzione:1ms, Precisione: ±(2.0%lettura + 2cifre)

RCD – Verifica su protezioni differenziali tipo DD

TOD Vermou Su protezioni unterenzi	
Tipo di Differenziale (RCD):	Tipo DD (in accordo allo standard IEC62955), Generali (G)
Sistemi Monofase (L-N-PE)	
Campo tensione L-PE, L-N:	100V÷265V
Campo tensione N-PE:	<10V
Sistemi Bifase (ritardo fase VL1-PE, VL2-PI	E = 180° o ritardo fase VL1-PE, VL2-PE = 120°)
Campo tensione L1-PE, L1-L2:	100V÷265V
Campo tensione L2-PE:	0V÷min[(VL1-PE-100V) e (VL1-L2-100V)]
Correnti di intervento nominali (IAN):	6mA
Frequenza:	$50/60Hz \pm 5\%$
·	

RCD tipo DD corrente di intervento 🚽 - (solo RCD tipo Generale)

Tipo RCD	ΙΔΝ	Campo [mA]	Risoluzione [mA]	Incertezza
DD	6mA	(0.2 ÷ 1.1) I _{∆N}	$\leq 0.1 I_{\Delta N}$	- 0%, +10%I _{∆N}

RCD tipo DD tempo di intervento x1 - (solo RCD tipo Generale)

Tipo RCD	IΔN	Campo [ms]	Risoluzione [ms]	Incertezza
DD	6mA	10000	1	±(2%lettura + 2cifre)

Resistenza globale di terra senza intervento RCD (Ra[⊥]/₊)

Campo tensione L-PE, L-N:	100 ÷ 265V
Campo tensione N-PE:	<10V
Frequenza:	50/60Hz \pm 5%

Resistenza globale di terra in sistemi con Neutro (3-fili) – (RCD 30mA o superiore)

Campo [Ω]	Risoluzione [Ω]	Incertezza
0.05 ÷ 9.99	0.01	
10.0 ÷ 199.9	0.1	\pm (5%)ettura +8cifre)

Resistenza globale di terra in sistemi con Neutro (3-fili) – (RCD 6mA e 10mA)

Campo [Ω]	Risoluzione [Ω]	Incertezza
0.05 ÷ 9.99	0.01	
10.0 ÷ 199.9	0.1	\pm (5%)ettura +30cliffe)

Resistenza globale di terra in sistemi senza Neutro (2-fili) – (RCD 30mA o superiore)

Campo [Ω]	Risoluzione [Ω]	Incertezza
0.05 ÷ 9.99	0.01	
10.0 ÷ 99.9	0.1	±(5%lettura +8cifre)
100 ÷ 1999	1	

Resistenza globale di terra in sistemi senza Neutro (2-fili) - (RCD 6mA e 10mA)

Campo [Ω]	Risoluzione [Ω]	Incertezza
0.05 ÷ 9.99	0.01	
10.0 ÷ 99.9	0.1	\pm (5% lettura +30 cifre)
100 ÷ 1999	1	

Tensione di contatto (misurata durante test RCD Ra +)

Campo [V]	Risoluzione [V]	Incertezza
0 ÷ Ut LIM	0.1	-0%, +(5.0%lettura + 3V)

Senso ciclico delle fasi a 1 terminale

Campo tensione P-N, P-PE[V]	Campo frequenza
100 ÷ 265	50 Hz/ 60 Hz \pm 5%

La misura avviene solo per contatto diretto con parti metalliche in tensione (non su guaina isolante)

10.2. NORMATIVE DI RIFERIMENTO

Sicurezza:	IEC/EN61010-1,IEC/EN61010-2-030,IEC/EN61010-2-033
EMC:	IEC/EN61326-1
Documentazione tecnica:	IEC/EN61187
Sicurezza accessori di misura:	IEC/EN61010-031
Isolamento:	doppio isolamento
Grado di inquinamento:	2
Max altitudine di utilizzo:	2000m
Categoria di misura:	CAT IV 300V verso terra, max 415V fra gli ingressi
RPE:	IEC/EN61557-4, BS7671 17th ed., AS/NZS3000/3017
MΩ:	IEC/EN61557-2, BS7671 17th ed., AS/NZS3000/3017
RCD:	IEC/EN61557-6 (solo su sistemi Fase-Neutro-Terra)
RCD-DD:	IEC62955
RCD CCID:	UL2231-2
LOOP P-P, P-N, P-PE:	IEC/EN61557-3, BS7671 17th ed., AS/NZS3000/3017
Multifunzione:	IEC/EN61557-10, BS7671 17th ed., AS/NZS3000/3017
Corrente di cortocircuito:	EN60909-0

10.3. CARATTERISTICHE GENERALI

Caratteristiche	emeccaniche
-----------------	-------------

Dimensioni (L x La x H):	225 x 165 x 75mm
Peso (batterie incluse):	1.2kg
Protezione meccanica:	IP40

Alimentazione

6x1.5 V alcaline tipo AA IEC LR06 MN1500 oppure
6 x1.2V ricaricabili NiMH tipo AA
simbolo "🖵" a display
> 500 prove per ogni funzione
dopo 10 minuti di non utilizzo (se attivato)

Varie

Display:	COG Bianco/nero graficoLCD, 320x240pxl
Memoria:	999 locazioni di memoria, 3 livelli di marcatori
Connessione a PC:	porta ottica/USB

10.4. AMBIENTE

10.4.1. Condizioni ambientali di utilizzo

23°C ± 5°C
0°C ÷ 40°C
<80%RH
-10°C ÷ 60°C
<80%RH

Questo strumento è conforme ai requisiti della Direttiva Europea sulla bassa tensione 2014/35/EU (LVD) e della direttiva EMC 2014/30/EU Questo strumento è conforme ai requisiti della direttiva europea 2011/65/EU (RoHS) e della direttiva europea 2012/19/EU (WEEE)

10.5. ACCESSORI

Vedere packing list

11. ASSISTENZA

11.1. CONDIZIONI DI GARANZIA

Questo strumento è garantito contro ogni difetto di materiale e fabbricazione, in conformità con le condizioni generali di vendita. Durante il periodo di garanzia, le parti difettose possono essere sostituite, ma il costruttore si riserva il diritto di riparare ovvero sostituire il prodotto. Qualora lo strumento debba essere restituito al servizio post - vendita o ad un rivenditore, il trasporto è a carico del Cliente. La spedizione dovrà, in ogni caso, essere preventivamente concordata. Allegata alla spedizione deve essere sempre inserita una nota esplicativa circa le motivazioni dell'invio dello strumento. Per la spedizione utilizzare solo l'imballo originale. Ogni danno causato dall'utilizzo di imballaggi non originali verrà addebitato al Cliente. Il costruttore declina ogni responsabilità per danni causati a persone o oggetti.

La garanzia non è applicata nei seguenti casi:

- Riparazione e/o sostituzione accessori e batteria (non coperti da garanzia)
- Riparazioni che si rendono necessarie a causa di un errato utilizzo dello strumento o del suo utilizzo con apparecchiature non compatibili
- Riparazioni che si rendono necessarie a causa di un imballaggio non adeguato
- Riparazioni che si rendono necessarie a causa di interventi eseguiti da personale non autorizzato
- Modifiche apportate allo strumento senza esplicita autorizzazione del costruttore
- Utilizzo non contemplato nelle specifiche dello strumento o nel manuale d'uso.

Il contenuto del presente manuale non può essere riprodotto in alcuna forma senza l'autorizzazione del costruttore.

I nostri prodotti sono brevettati e i marchi depositati. Il costruttore si riserva il diritto di apportare modifiche alle specifiche ed ai prezzi se ciò è dovuto a miglioramenti tecnologici

11.2. ASSITENZA

Se lo strumento non funziona correttamente, prima di contattare il servizio di assistenza, controllare lo stato delle batterie e dei cavi e sostituirli se necessario. Se lo strumento continua a manifestare malfunzionamenti controllare se la procedura di utilizzo dello stesso è conforme a quanto indicato nel presente manuale. Qualora lo strumento debba essere restituito al servizio post-vendita o ad un rivenditore, il trasporto è a carico del Cliente. La spedizione dovrà, in ogni caso, essere preventivamente concordata. Allegata alla spedizione deve essere sempre inserita una nota esplicativa circa le motivazioni dell'invio dello strumento. Per la spedizione utilizzare solo l'imballaggio originale; ogni danno causato dall'utilizzo di imballaggi non originali verrà addebitato al Cliente.

12. APPENDICI TEORICHE

12.1. CONTINUITÀ DEI CONDUTTORI DI PROTEZIONE

<u>Scopo della prova</u>

Accertare la continuità dei:

- Conduttori di protezione (PE), conduttori equipotenziali principali (EQP), conduttori equipotenziali secondari (EQS) nei sistemi TT e TN-S
- Conduttori di neutro con funzione di conduttori di protezione (PEN) nei sistemi TN-C.

Questa prova strumentale va preceduta da un esame a vista che accerti l'esistenza dei conduttori di protezione ed equipotenziali di colore giallo-verde e che le sezioni utilizzate siano conformi a quanto prescritto dalle norme.

Parti dell'impianto da verificare

Collegare uno dei puntali al conduttore di protezione della presa forza motrice e l'altro al nodo equipotenziale dell'impianto di terra.

Collegare uno dei puntali alla massa estranea (in questo caso è il tubo dell'acqua) e l'altro all'impianto di terra utilizzando ad esempio il conduttore di protezione presente nella presa forza motrice più vicina.

Fig. 39: Esempi di misure di continuità dei conduttori

Verificare la continuità tra:

- Poli di terra di tutte le prese a spina e collettore o nodo di terra
- Morsetti di terra degli apparecchi di classe I (boiler ecc.) e collettore o nodo di terra
- Masse estranee principali (tubi acqua, gas, ecc.) e collettore o nodo di terra
- Masse estranee supplementari fra loro e verso morsetto terra.

Valori ammissibili

Le norme non richiedono la misurazione della resistenza di continuità e la comparazione di quanto misurato con valori limite. Viene richiesta una prova della continuità e prescritto che lo strumento di misura segnali all'operatore se la prova non viene eseguita con una corrente di almeno 200mA ed una tensione a vuoto compresa tra 4 e 24V. I valori di resistenza possono essere calcolati in base alle sezioni ed alle lunghezze dei conduttori in esame. In generale, per valori intorno a qualche ohm, la prova si può ritenere superata

12.2. RESISTENZA DI ISOLAMENTO

Scopo della prova

Verificare che la resistenza di isolamento dell'impianto sia conforme a quanto previsto dalla norma applicabile (ad esempio CEI 64-8/6 negli impianti elettrici fino a 500V). Questa prova deve essere effettuata con il circuito in esame non alimentato e disinserendo gli eventuali carichi che esso alimenta.

Valori ammissibili

I valori della tensione di misura e della resistenza minima di isolamento possono essere ricavati dalla tabella seguente (CEI 64-8/6 Tab. 61A):

Tensione nominale del circuito [V]	Tensione di prova [V]	Resistenza di isolamento [MΩ]	
SELV e PELV *	250	≥ 0.250	
fino a 500 V compresi, esclusi i circuiti sopra	500	≥ 1.000	
oltre i 500 V	1000	≥ 1.000	
· · · · · · · · · · · · · · · · · · ·			

I termini SELV e PELV sostituiscono nella nuova stesura della normativa le vecchie definizioni "bassissima tensione di sicurezza" o "funzionale"

Tabella 4: Tipologie di prova più comuni, misurazione della resistenza di isolamento

Parti dell'impianto da verificare

Verificare la resistenza di isolamento tra:

- Ogni conduttore attivo e la terra (il conduttore di neutro è considerato un conduttore attivo tranne nel caso di sistemi di alimentazione di tipo TN-C ove è considerato parte della terra (PEN)). Durante questa misura tutti i conduttori attivi possono essere connessi fra loro, qualora il risultato della misura non dovesse rientrare nei limiti normativi occorrà ripetere la prova separatamente per ogni singolo conduttore
- I conduttori attivi. La norma CEI 64-8/6 raccomanda di verificare anche l'isolamento tra i conduttori attivi quando ciò è possibile.

Qualora l'impianto comprenda dispositivi elettronici occorre scollegarli dall'impianto stesso per evitarne il danneggiamento. Se ciò non fosse possibile, eseguire solo la prova tra conduttori attivi (che in questo caso devono essere collegati insieme) e la terra.

In presenza di un circuito molto esteso i conduttori che corrono affiancati costituiscono una capacità che lo strumento deve caricare per poter ottenere una misura corretta, in questo caso è consigliabile mantenere premuto il tasto di avvio della misurazione (nel caso in cui si esegua la prova in modalità manuale) finché il risultato non si stabilizzi.

L'indicazione "> fondo scala" segnala che la resistenza di isolamento misurata dallo strumento è superiore al limite massimo di resistenza misurabile, ovviamente tale risultato è ampiamente superiore ai limiti minimi della tabella normativa di cui sopra pertanto l'isolamento in quel punto sarebbe da ritenersi a norma.

12.2.1. Misura Indice di Polarizzazione (PI)

Lo scopo di questo test diagnostico è quello di valutare l'influenza degli effetti di polarizzazione. All'applicazione di una tensione elevata ad un isolante, i dipoli elettrici distribuiti nell'isolante si allineano nella direzione del campo elettrico applicato. Questo fenomeno è chiamato <u>polarizzazione</u>. Per effetto delle molecole polarizzate si genera una corrente di polarizzazione (assorbimento) che abbassa il valore complessivo della resistenza di isolamento.

Il parametro **PI** consiste nel rapporto tra il valore di resistenza di isolamento misurata dopo 1 minuto e quella dopo 10 minuti. La tensione di prova è mantenuta per tutta la durata del test e al termine lo strumento fornisce il valore del rapporto:

 $PI = \frac{Riso(10\min)}{Riso(1\min)}$

Alcuni valori di riferimento:

Valore PI	Condizione dell'isolamento		
da 1.0 a 1.25	Non accettabile		
da 1.4 a 1.6	Buono		
>1.6	Eccellente		

12.2.2. Rapporto di Assorbimento Dielettrico (DAR)

Il parametro **DAR** consiste nel rapporto tra il valore di resistenza di isolamento misurata dopo 30s e quella dopo 1minuto. La tensione di prova è mantenuta per tutta la durata del test e al termine lo strumento fornisce il valore del rapporto:

 $DAR = \frac{Riso(1\min)}{Riso(30s)}$

Alcuni valori di riferimento:

Valore DAR	Condizione dell'isolamento		
< 1.0	Pericoloso		
da 1.0 a 2.0	Discutibile		
da 2.0 a 4.0	Buono		
> 4.0	Eccellente		

12.3. VERIFICA DELLA SEPARAZIONE DEI CIRCUITI

<u>Definizioni</u>

Un sistema **SELV** è un sistema di categoria zero o sistema a bassissima tensione di sicurezza caratterizzato da alimentazione da sorgente autonoma (es. batterie di pile, piccolo gruppo elettrogeno) o di sicurezza (es. trasformatore di sicurezza), separazione di protezione verso altri sistemi elettrici (isolamento doppio o rinforzato oppure uno schermo metallico collegato a terra) ed assenza di punti messi a terra (isolato da terra).

Un sistema **PELV** è un sistema di categoria zero o sistema a bassissima tensione di protezione caratterizzato da alimentazione da sorgente autonoma (es. batterie di pile, piccolo gruppo elettrogeno) o di sicurezza (es. trasformatore di sicurezza), separazione di protezione verso altri sistemi elettrici (isolamento doppio o rinforzato oppure uno schermo metallico collegato a terra) e, a differenza dei sistemi **SELV**, presenza di punti messi a terra (non isolato da terra).

Un sistema con **separazione elettrica** è un sistema caratterizzato da alimentazione da trasformatore di isolamento o sorgente autonoma con caratteristiche equivalenti (es. gruppo motore generatore), separazione di protezione verso altri sistemi elettrici (isolamento non inferiore a quello del trasformatore di isolamento), separazione di protezione verso terra (isolamento non inferiore a quello del trasformatore di isolamento).

Scopo della prova

La prova, da effettuare nel caso in cui la protezione sia attuata mediante separazione (64-8/6 612.4, SELV o PELV o separazione elettrica), deve verificare che la resistenza di isolamento misurata come descritto di seguito (a seconda del tipo di separazione) sia conforme ai limiti riportati nella tabella relativa alle misure di isolamento.

Parti dell'impianto da verificare

- Sistema **SELV** (Safety Extra Low Voltage):
 - Misurare la resistenza tra le parti attive del circuito in prova (separato) e le parti attive degli altri circuiti
 - ✓ Misurare la resistenza tra le parti attive del circuito in prova (separato) e la terra.
- Sistema **PELV** (Protective Extra Low Voltage):
 - Misurare la resistenza tra le parti attive del circuito in prova (separato) e le parti attive degli altri circuiti.

• Separazione elettrica:

- Misurare la resistenza tra le parti attive del circuito in prova (separato) e le parti attive degli altri circuiti
- ✓ Misurare la resistenza tra le parti attive del circuito in prova (separato) e la terra.

Valori ammissibili

La prova ha esito positivo quando la resistenza di isolamento presenta valori superiori o uguali a quelli indicati in Tabella 4.

ESEMPIO DI VERIFICA DI SEPARAZIONE TRA CIRCUITI ELETTRICI

12.4. TEST SU INTERRUTTORI DIFFERENZIALI (RCD)

<u>Scopo della prova</u>

Verificare (CEI 64-8 612.9, CEI 64-14 2.3.2.2) che i dispositivi di protezione differenziale Generali (G), Selettivi (S) siano stati installati e regolati correttamente e che conservino nel tempo le proprie caratteristiche. La verifica deve accertare che l'interruttore differenziale intervenga ad una corrente non superiore alla sua corrente nominale di funzionamento IdN e che il tempo di intervento soddisfi, a seconda del caso, le seguenti condizioni:

- Non superi il tempo massimo dettato dalla normativa nel caso di interruttori differenziali di tipo Generale (secondo quanto descritto nella Tabella 5)
- Sia compreso tra il tempo di intervento minimo e quello massimo nel caso di interruttori differenziali di tipo Selettivo (secondo quanto descritto nella Tabella 5)

La prova dell'interruttore differenziale effettuata con il tasto di prova serve per far sì che "l'effetto colla" non comprometta il funzionamento del dispositivo rimasto inattivo per lungo tempo. Tale prova viene eseguita solo per accertare la funzionalità meccanica del dispositivo e non è sufficiente per poter dichiarare la conformità alla normativa del dispositivo a corrente differenziale. Da un'indagine statistica risulta che la verifica con tasto di prova degli interruttori effettuata una volta al mese riduce della metà il tasso di guasto di questi, però tale prova individua solo il 24% degli interruttori differenziali difettosi.

Parti dell'impianto da verificare

Tutti i differenziali devono essere testati quando vengono installati. Negli impianti a bassa tensione si consiglia di eseguire questa prova, fondamentale al fine di garantire un giusto livello di sicurezza. Nei locali ad uso medico tale verifica deve essere eseguita periodicamente su tutti i differenziali come imposto dalle norme CEI 64-8/7 e CEI 64-13.

Valori ammissibili

Su ogni RCD di tipo scatolato (STD) devono essere eseguite due prove: una con corrente di dispersione che inizi in fase con la semionda positiva della tensione (0°) e una con corrente di dispersione che inizi in fase con la semi onda negativa della tensione (180°). Il risultato indicativo è il tempo più alto. La prova a ½IdN non deve in nessun caso causare l'intervento del differenziale.

Tipo differenziale	ldN x 1	ldN x 2	ldN x 5	Descrizione
Generale	0.3s	0.15s	0.04s	Tempo di intervento massimo in secondi
Selettivo S	0.13s	0.05s	0.05s	Tempo di intervento minimo in secondi
	0.5s	0.20s	0.15s	Tempo di intervento massimo in secondi

Tabella 5: Tempi di intervento per interruttori RCD di tipo scatolato Generali e Selettivi **Tempi di intervento in accordo a normativa AS/NZS 3017 (**)**

		½ l∆n (*)	l∆n	5 x l∆n	
Tipo RCD	ldN [mA]	t∆ [ms]			Note
I	≤10		4	40	
II	>10 ≤ 30		200	40	Tompo di intorvonto massimo
	> 30	>999ms	300	40	
1/ [6]	> 20		500	150	
10 [3]	> 30		130	50	Tempo di intervento minimo

Tabella 6: Tempi di intervento per RCD Generali e Selettivi in nazione AUS/NZ

(*) Corrente di intervento 1/2 IAn, RCD non deve intervenire

(**) Corrente di prova e incertezze in accordo a normativa AS/NZS 3017

Misura della corrente di intervento delle protezioni differenziali

- Scopo della prova è verificare la reale corrente di intervento dei differenziali generali (non si applica ai differenziali selettivi)
- In presenza di interruttori differenziali con corrente di intervento che può essere selezionata è utile effettuare questa prova per verificare la reale corrente di intervento del differenziale. Per i differenziali con corrente differenziale fissa questa prova può essere eseguita per rilevare eventuali dispersioni di utilizzatori collegati all'impianto
- Nel caso non sia disponibile l'impianto di terra effettuare la prova collegando lo strumento con un terminale su un conduttore a valle del dispositivo differenziale ed un terminale sull'altro conduttore a monte del dispositivo stesso
- La corrente di intervento deve essere compresa fra ½ IdN e IdN.

12.5. VERIFICA DEL POTERE DI INTERRUZIONE DELLA PROTEZIONE Scopo della prova

Verificare che il potere di interruzione del dispositivo di protezione sia superiore alla massima corrente di guasto possibile sull'impianto.

Parti dell'impianto da verificare

La prova deve essere effettuata nel punto in cui si può avere la massima corrente di corto circuito, normalmente immediatamente a valle della protezione da controllare.

La prova deve essere effettuata fra fase e fase (Z_{LL}) negli impianti trifase e fra fase e neutro (Z_{LN}) negli impianti monofase.

Valori ammissibili

Lo strumento esegue il confronto tra il valore misurato e il valore calcolato in accordo alle seguenti relazioni derivate dalla normativa EN60909-0:

$$BC > I_{MAX3\Phi} = C_{MAX} \cdot \frac{\frac{U_{L-L}^{NOM}}{\sqrt{3}}}{\frac{Z_{L-L}}{2}}$$

Impianti Trifase

Impianti Monofase

ove: BC = potere di interruzione della protezione (Breaking Capacity)

 Z_{L-L} = impedenza misurata fra fase e fase

Z_{L-N} = impedenza misurata fra fase e neutro

Tensione Misurata	U _{NOM}	CMAX
230V-10% < Vmisurata < 230V+ 10%	230V	1,05
230V+10% < Vmisurata < 400V- 10%	Vmisurata	1,10
400V-10% < Vmisurata < 400V+ 10%	400V	1,05

12.6. VERIFICA PROTEZIONE CONTRO CONTATTI INDIRETTI NEI SISTEMI TN Scopo della prova

La protezione dai contatti indiretti nei sistemi TN deve essere garantita mediante un dispositivo di protezione contro le sovracorrenti (tipicamente magnetotermico o fusibile) che interrompa l'alimentazione al circuito o all'equipaggiamento in caso di guasto tra una parte attiva e una massa o un conduttore di protezione entro una durata <u>non superiore a</u> <u>5s</u>, sufficiente per le macchine, oppure in accordo ai tempi riportati nella seguente Tabella 7. Per altre nazioni fare riferimento alle rispettive regolamentazioni

Uo [V]	Tempo di interruzione della protezione [s]
50 ÷ 120	0.8
120 ÷ 230	0.4
230 ÷ 400	0.2
>400	0.1

Tabella 7: Tempi di interruzione della protezione (fonte CEI 64-8/4)

Uo = Tensione nominale AC verso terra dell'impianto

Tale prescrizione è soddisfatta dalla condizione:

Zs * la ≤ Uo

dove:

- Zs = Impedenza di anello di guasto P-PE che comprende l'avvolgimento di fase del trasformatore, il conduttore di linea, fino al punto di guasto e il conduttore di protezione dal punto di guasto al centro stella del trasformatore
- la = Corrente che provoca l'interruzione automatica della protezione entro il tempo indicato nella Tabella 7
- Uo = Tensione nominale AC verso terra

ATTENZIONE Lo strumento deve essere utilizzato per eseguire misure dell'impedenza dell'anello di guasto di valore almeno 10 volte superiore alla della risoluzione dello strumento in modo da minimizzare l'errore commesso.

Parti dell'impianto da verificare

La prova deve essere effettuata obbligatoriamente nei sistemi TN <u>non protetti con</u> dispositivi differenziali.

Valori ammissibili

L'obiettivo della misura eseguita dallo strumento è quello di verificare che in ogni punto dell'impianto sia verificata la relazione, derivata dalla normativa EN60909-0:

$$Ia \le I_{MIN P-PE} = C_{MIN} \cdot \frac{U_{P-PE}^{NOM}}{Z_{P-PE}}$$

Tensione Misurata	U _{NOM}	C _{MIN}
230V-10% < Vmisurata < 230V+ 10%	230V	0,95
230V+10% < Vmisurata < 400V- 10%	Vmisurata	1,00
400V-10% < Vmisurata < 400V+ 10%	400V	0,95

Lo strumento, in funzione del valore di tensione P-PE nominale impostato (vedere § 5.1.3) e del valore misurato dell'impedenza di anello di guasto, calcola il **valore minimo** della corrente di cortocircuito presunta che deve essere interrotta dal dispositivo di protezione. Tale valore, per un corretto coordinamento, DEVE essere sempre superiore o uguale al valore **la** della corrente di intervento dal tipo di protezione considerata come caso peggiore

Il valore di riferimento la (vedere Fig. 41) è funzione di:

- Tipo di protezione (curve B, C, D, K)
- Corrente nominale della protezione In
- Tempo di estinzione del guasto da parte della protezione

Tipicamente: $Ia = 3 \div 5In$ (curva B), $Ia = 5 \div 10In$ (curva C), $Ia = 10 \div 20In$ (curve D,K)

Fig. 41: Curve di intervento protezioni magnetotermiche (MCB)

Lo strumento consente la selezione (*) dei seguenti parametri:

- MCB curva B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB curva C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB curve D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- ➤ Fusibile gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A
- ➤ Fusible aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A, 160A, 200A, 250A, 315A, 400A, 500A, 630A
- Tempo di estinzione del guasto da parte della protezione selezionabile tra i valori: 0.1s, 0.2s, 0.4s, 1s, 5s

(*) Valori soggetti a variazioni

12.7. TEST RA÷ NEI SISTEMI TN

La protezione dai contatti indiretti nei sistemi TN deve essere garantita mediante un dispositivo di protezione contro le sovracorrenti (tipicamente magnetotermico o fusibile) che interrompa l'alimentazione al circuito o all'equipaggiamento in caso di guasto tra una parte attiva e una massa o un conduttore di protezione entro una durata <u>non superiore a</u> <u>5s</u>, sufficiente per le macchine.

Parti dell'impianto da verificare

La prova deve essere effettuata nel punto in cui si può avere la minima corrente di corto circuito, normalmente al termine della linea controllata dalla protezione nelle normali condizioni di funzionamento. La prova deve essere effettuata fra Fase-PE (Z_{L-PE}) e tra Fase-Neutro (Z_{L-N}) negli impianti monofase.

Valori ammissibili

Il valore della impedenza comunque misurato deve soddisfare le seguenti relazioni:

$$Z_{L-N} \leq Z_{LIM}$$
 (2)

dove:

- Z_{L-PE} = Impedenza misurata tra Fase e PE
- Z_{L-N} = Impedenza misurata tra Fase e Neutro
- Valore limite Massimo dell'impedenza funzione del tipo di protezione
 Z_{LIM} = (Magnetotermico o Fusibile) e dal tempo di intervento della protezione (valore dipendente dalla Nazione di riferimento)

Lo strumento consente la selezione (*) dei seguenti parametri:

- MCB curva B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB curva C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB curve D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- ➤ Fusibile gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A
- ➤ Fusibile aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A
- Tempo di estinzione del guasto da parte della protezione selezionabile tra i valori: 0.1s, 0.2s, 0.4s, 1s, 5s

(*) Valori soggetti a variazioni

12.8. VERIFICA PROTEZIONE CONTRO CONTATTI INDIRETTI NEI SISTEMI TT Scopo della prova

Verificare che il dispositivo di protezione sia coordinato con il valore della resistenza di terra. Non si può assumere a priori un valore di resistenza di terra limite al quale fare riferimento nel controllo del risultato della misura, ma è necessario di volta in volta controllare che sia rispettato il coordinamento previsto dalla normativa.

Parti dell'impianto da verificare

L'impianto di terra nelle condizioni di esercizio. La verifica deve essere eseguita senza scollegare i dispersori.

<u>Valori ammissibili</u>

Il valore della resistenza di terra comunque misurato deve soddisfare la seguente relazione:

 $R_A < 50 / I_a$

- ove: R_A = resistenza misurata dell'impianto di terra il cui valore può essere determinato con le seguenti misurazioni:
 - Resistenza di terra con metodo voltamperometrico a tre fili
 - Impedenza dell'anello di guasto (*)
 - Resistenza di terra a due fili (**)
 - Resistenza di terra a due fili nella presa (**)
 - Resistenza di terra data dalla misura della tensione di contatto Ut (**)
 - Resistenza di terra data dalla misura della prova del tempo di intervento degli interruttori differenziali RCD (A, AC, B), RCD S (A, AC) (**)
 - I_a = corrente di intervento dell'interruttore automatico o corrente nominale di intervento del differenziale (nel caso di RCD S 2 IdN) espressa in A
 - 50 = tensione limite di sicurezza (ridotta a 25V in ambienti particolari)
- (*) Se a protezione dell'impianto si trova un interruttore differenziale la misura deve essere effettuata a monte del differenziale stesso o a valle cortocircuitando lo stesso per evitare che questo intervenga
- (**) Questi metodi, pur se non attualmente previsti dalle norme CEI 64.8, forniscono valori che innumerevoli prove di confronto con il metodo a tre fili hanno dimostrato essere indicativi della resistenza di terra.

ESEMPIO DI VERIFICA DI RESISTENZA DI TERRA

Impianto protetto da un differenziale da 30mA

- > Misura della resistenza di terra utilizzando uno dei metodi sopra citati
- Per capire se la resistenza dell'impianto sia da considerarsi a norma moltiplicare il valore trovato per 0.03A (30mA)
- Se il risultato è inferiore a 50V (o 25V per ambienti particolari) l'impianto è da ritenersi coordinato perché rispetta la relazione indicata sopra

Quando siamo in presenza di differenziali da 30mA (la quasi totalità degli impianti civili) la resistenza di terra massima ammessa è $50/0.03=1666\Omega$ questo consente di utilizzare anche i metodi semplificati indicati che pur non fornendo un valore estremamente preciso, forniscono un valore sufficientemente approssimato per il calcolo del coordinamento

12.9. VERIFICA PROTEZIONE CONTRO CONTATTI INDIRETTI NEI SISTEMI IT

Nei sistemi IT le parti attive devono essere isolate da terra oppure essere collegate a terra attraverso un'impedenza di valore sufficientemente elevato. Nel caso di un singolo guasto a terra la corrente di primo guasto è quindi debole e non è necessario interrompere il circuito. Questo collegamento può essere effettuato al punto neutro del sistema oppure ad un punto neutro artificiale. Se non esiste alcun punto neutro, si può <u>collegare a terra attraverso un'impedenza un conduttore di linea</u>. Si devono tuttavia prendere precauzioni per evitare il rischio di effetti fisiologici dannosi su persone in contatto con parti conduttrici simultaneamente accessibili nel caso di doppio guasto a terra.

Scopo della prova

Verificare che l'impedenza del dispersore a cui sono collegate le masse soddisfi la relazione:

$$Z_E * I_d \le U_L$$

dove:

- Z_E = Impedenza L-PE del dispersore a cui sono collegate le masse
- Id = Corrente di primo guasto L-PE (tipicamente espressa in mA)

U_L = Tensione di contatto limite 25V oppure 50V

Parti dell'impianto da verificare

L'impianto di terra nelle condizioni di esercizio. La verifica deve essere eseguita senza scollegare i dispersori.

12.10. VERIFICA COORDINAMENTO DELLE PROTEZIONI L-L, L-N E L-PE Scopo della prova

Eseguire la verifica del coordinamento delle protezioni (tipicamente magnetotermica o fusibile) presenti in un'installazione Monofase o Trifase in funzione del tempo limite di intervento impostato e del valore calcolato della corrente di cortocircuito.

Parti dell'impianto da verificare

La prova deve essere effettuata nel punto in cui si può avere la minima corrente di corto circuito, normalmente al termine della linea controllata dalla protezione nelle normali condizioni di funzionamento. La prova deve essere effettuata fra Fase-Fase negli impianti trifase e fra Fase-Neutro o Fase-PE negli impianti monofase

Valori ammissibili

Lo strumento esegue il confronto tra il valore calcolato della corrente di cortocircuito presunta e la corrente **la** che provoca l'interruzione automatica della protezione entro il tempo specificato in accordo alle seguenti relazioni:

$$\begin{split} I_{SCL-L_Min2\Phi} > I_a & \text{Sistema Trifase} \rightarrow \text{Impedenza Loop F-F} \\ I_{SCL-N_Min} > I_a & \text{Sistema Monofase} \rightarrow \text{Impedenza Loop F-N} \\ I_{SCL-PE_Min} > I_a & \text{Sistema Monofase} \rightarrow \text{Impedenza Loop F-PE} \end{split}$$

In cui:

Isc L-L_Min2F	=	Corrente di cortocircuito presunta minima bifase Fase-Fase
Isc L-N_Min	=	Corrente di cortocircuito presunta minima Fase-Neutro
Isc L-PE_Min	=	Corrente di cortocircuito presunta minima Fase-PE

Il calcolo della corrente di cortocircuito presunta è eseguito dallo strumento sulla base della misura dell'impedenza di anello di guasto in accordo alle seguenti relazioni derivate dalla normativa EN60909-0:

$$I_{SCL-L_Min2\Phi} = C_{MIN} \cdot \frac{U_{L-L}^{NOM}}{Z_{L-L}} \qquad I_{SCL-N_Min} = C_{MIN} \cdot \frac{U_{L-N}^{NOM}}{Z_{L-N}} \qquad I_{SCL-PE_Min} = C_{MIN} \cdot \frac{U_{L-PE}^{NOM}}{Z_{L-PE}}$$

Fase – Fase

Fase – Neutro

Fase – PE

Tensione Misurata	U _{NOM}	C _{MIN}
230V-10% < Vmisurata < 230V+ 10%	230V	0,95
230V+10% < Vmisurata < 400V- 10%	Vmisurata	1,00
400V-10% < Vmisurata < 400V+ 10%	400V	0,95

dove:

U L-L = Tensione fase – fase nominale

- U L-N = Tensione fase neutro nominale
- U L-PE = Tensione fase PE nominale
- Z L-L = Impedenza misurata fra fase e fase
- Z L-N = Impedenza misurata fra fase e neutro
- Z L-PE = Impedenza misurata fra fase e PE

ATTENZIONE

Lo strumento deve essere utilizzato per eseguire misure dell'impedenza dell'anello di guasto di valore almeno 10 volte superiore alla della risoluzione dello strumento in modo da minimizzare l'errore commesso.

Lo strumento, in funzione del valore di tensione nominale impostato (vedere § 5.1.3) e del valore misurato dell'impedenza di anello di guasto, calcola il **valore minimo** della corrente di cortocircuito presunta che deve essere interrotta dal dispositivo di protezione. Tale valore, per un corretto coordinamento, DEVE essere sempre superiore o uguale al valore **la** della corrente di intervento del tipo di protezione considerata.

Il valore di riferimento **la** è funzione di:

- Tipo di protezione (curva)
- Corrente nominale della protezione
- > Tempo di estinzione del guasto da parte della protezione

Lo strumento consente la selezione (*) dei seguenti parametri:

- MCB curva B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB curva C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB curve D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- ➤ Fusibile gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A
- Fusibile aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A
- Tempo di estinzione del guasto da parte della protezione selezionabile tra i valori: 0.1s, 0.2s, 0.4s, 1s, 5s

(*) Valori soggetti a variazioni

12.11. VERIFICA DELLA CADUTA DI TENSIONE SU LINEE DI DISTRIBUZIONE

La misura della caduta di tensione come conseguenza del flusso di corrente attraverso un impianto o una parte di esso può essere molto importante se occorre:

- > Verificare la capacità di alimentare un carico da parte dell'impianto esistente
- Dimensionare un nuovo impianto
- Ricercare possibili cause di malfunzionamenti su apparecchiature, utilizzatori, ecc.. collegati ad una linea elettrica

Scopo della prova

Eseguire la misura del valore massimo della caduta di tensione percentuale tra due punti di una linea di distribuzione

Parti dell'impianto da verificare

La prova deve essere effettuata eseguendo due misure sequenziali di impedenza di linea nei punti iniziale (tipicamente a valle di un dispositivo di protezione) e finale della linea stessa.

Valori ammissibili

Lo strumento esegue il confronto tra il valore calcolato della caduta di tensione massima $\Delta V\%$ e il limite impostato (tipicamente 4% in accordo alla normativa CEI 64-8) in base alla seguente relazione:

$$\Delta V\%_{MAX} = \frac{(Z_2 - Z_1) * I_{NOM}}{V_{NOM}} * 100$$

dove:

Z2=Impedenza finale della linea in esameZ1=Impedenza iniziale (Offset) della linea in esame (Z2 > Z1)INOM=Corrente nominale del dispositivo di protezione sulla linea in esame

V_{NOM} = Tensione nominale Fase-Neutro o Fase-Terra della linea in esame

NOTE			

YAMUM0073HT0

HT ITALIA SRL Via della Boaria, 40 48018 – Faenza (RA) – Italy T +39 0546 621002 | F +39 0546 621144 M ht@ht-instruments.com | ht-instruments.com

WHERE WE ARE

